Now Alice can start the decryption process. She finds a decryption exponent such that
![[Graphics:Images/index_gr_2.gif]](Images/index_gr_2.gif)
Since and p-1 don't have any common prime factors, she can do this using the Euclidean Algorithm.
![[Graphics:Images/index_gr_4.gif]](Images/index_gr_4.gif)
![[Graphics:Images/index_gr_6.gif]](Images/index_gr_6.gif)
She keeps this private also, but for each number , she computes
![[Graphics:Images/index_gr_8.gif]](Images/index_gr_8.gif)
We know
![[Graphics:Images/index_gr_9.gif]](Images/index_gr_9.gif)
so
![[Graphics:Images/index_gr_10.gif]](Images/index_gr_10.gif)
but
![[Graphics:Images/index_gr_11.gif]](Images/index_gr_11.gif)
by Fermat's Little Theorem. So
![[Graphics:Images/index_gr_12.gif]](Images/index_gr_12.gif)
Alice doesn't know what is, but it doesn't matter. She just sends the numbers
back to Bob.
![[Graphics:Images/index_gr_15.gif]](Images/index_gr_15.gif)
Likewise Bob finds a decryption exponent such that
![[Graphics:Images/index_gr_23.gif]](Images/index_gr_23.gif)
![[Graphics:Images/index_gr_24.gif]](Images/index_gr_24.gif)
![[Graphics:Images/index_gr_26.gif]](Images/index_gr_26.gif)
For each number , he computes
![[Graphics:Images/index_gr_28.gif]](Images/index_gr_28.gif)
We know
![[Graphics:Images/index_gr_29.gif]](Images/index_gr_29.gif)
so
![[Graphics:Images/index_gr_30.gif]](Images/index_gr_30.gif)
and Bob has decoded the message.
![[Graphics:Images/index_gr_31.gif]](Images/index_gr_31.gif)
![[Graphics:Images/index_gr_38.gif]](Images/index_gr_38.gif)
![[Graphics:Images/index_gr_39.gif]](Images/index_gr_39.gif)
![[Graphics:Images/index_gr_40.gif]](Images/index_gr_40.gif)
The Massey-Omura system, like the Diffie-Hellman system, seems to be secure as long as the DLP is hard.