Suppose we're sending the same message to Alice, Bob, and Carol, and they all have the same small exponent.
![[Graphics:Images/rsaB_gr_1.gif]](Images/rsaB_gr_1.gif)
![[Graphics:Images/rsaB_gr_2.gif]](Images/rsaB_gr_2.gif)
![[Graphics:Images/rsaB_gr_4.gif]](Images/rsaB_gr_4.gif)
![[Graphics:Images/rsaB_gr_5.gif]](Images/rsaB_gr_5.gif)
![[Graphics:Images/rsaB_gr_6.gif]](Images/rsaB_gr_6.gif)
![[Graphics:Images/rsaB_gr_8.gif]](Images/rsaB_gr_8.gif)
![[Graphics:Images/rsaB_gr_10.gif]](Images/rsaB_gr_10.gif)
![[Graphics:Images/rsaB_gr_11.gif]](Images/rsaB_gr_11.gif)
![[Graphics:Images/rsaB_gr_12.gif]](Images/rsaB_gr_12.gif)
![[Graphics:Images/rsaB_gr_14.gif]](Images/rsaB_gr_14.gif)
![[Graphics:Images/rsaB_gr_16.gif]](Images/rsaB_gr_16.gif)
![[Graphics:Images/rsaB_gr_17.gif]](Images/rsaB_gr_17.gif)
![[Graphics:Images/rsaB_gr_18.gif]](Images/rsaB_gr_18.gif)
![[Graphics:Images/rsaB_gr_19.gif]](Images/rsaB_gr_19.gif)
Message to Alice:
![[Graphics:Images/rsaB_gr_20.gif]](Images/rsaB_gr_20.gif)
Message to Bob:
![[Graphics:Images/rsaB_gr_23.gif]](Images/rsaB_gr_23.gif)
Message to Carol:
![[Graphics:Images/rsaB_gr_26.gif]](Images/rsaB_gr_26.gif)
Eve (an eavesdropper) hears the messages. Eve knows
![[Graphics:Images/rsaB_gr_29.gif]](Images/rsaB_gr_29.gif)
and similarly for the second half of the message. (Everything here except P is public information!) Then the Chinese Remainder Theorem (c. 1st century C.E.) says Eve can recover
![[Graphics:Images/rsaB_gr_30.gif]](Images/rsaB_gr_30.gif)
using the magic formula
![[Graphics:Images/rsaB_gr_31.gif]](Images/rsaB_gr_31.gif)
![[Graphics:Images/rsaB_gr_33.gif]](Images/rsaB_gr_33.gif)
But now Eve can use the small message attack:
![[Graphics:Images/rsaB_gr_35.gif]](Images/rsaB_gr_35.gif)
This is guaranteed to work if there are at least e messages. Moral: don't send identical messages!