We need one more piece of (private) information.
If a and b don't have any common prime factors, then there are integers c and d such that
![[Graphics:Images/rsa7_gr_1.gif]](Images/rsa7_gr_1.gif)
Since we picked e such that e and (p-1)(q-1) don't have any common prime factors, then there are integers c and d such that
![[Graphics:Images/rsa7_gr_2.gif]](Images/rsa7_gr_2.gif)
or
![[Graphics:Images/rsa7_gr_3.gif]](Images/rsa7_gr_3.gif)
Euclid also tells us how to find c and d, using the Euclidean Algorithm.
Once we have found the decryption exponent d, which is private, we can decrypt.
For each C, compute
![[Graphics:Images/rsa7_gr_4.gif]](Images/rsa7_gr_4.gif)
What will this give you?
We know
![[Graphics:Images/rsa7_gr_5.gif]](Images/rsa7_gr_5.gif)
although we don't yet know what P is. So
![[Graphics:Images/rsa7_gr_6.gif]](Images/rsa7_gr_6.gif)
but
![[Graphics:Images/rsa7_gr_7.gif]](Images/rsa7_gr_7.gif)
by Euler's Theorem! So
![[Graphics:Images/rsa7_gr_8.gif]](Images/rsa7_gr_8.gif)
and we get our original plaintext back.
Example:
![[Graphics:Images/rsa7_gr_9.gif]](Images/rsa7_gr_9.gif)
![[Graphics:Images/rsa7_gr_11.gif]](Images/rsa7_gr_11.gif)
![[Graphics:Images/rsa7_gr_12.gif]](Images/rsa7_gr_12.gif)
![[Graphics:Images/rsa7_gr_19.gif]](Images/rsa7_gr_19.gif)
![[Graphics:Images/rsa7_gr_20.gif]](Images/rsa7_gr_20.gif)
![[Graphics:Images/rsa7_gr_21.gif]](Images/rsa7_gr_21.gif)