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Abstract. We consider the higher order Schrödinger operator H = (−∆)m + V (x)

in n dimensions with real-valued potential V when n > 4m, m ∈ N. We adapt our

recent results for m > 1 to show that when H has a threshold eigenvalue the wave

operators are bounded on Lp(Rn) for the natural range 1 ≤ p < n
2m in both even

and odd dimensions. The approach used works without distinguishing even and odd

cases, and matches the range of boundedness in the classical case when m = 1. The

proof applies in the classical m = 1 case as well and simplifies the argument.

1. Introduction

We continue the study of wave operators for higher order Schrödinger operators

related to equations of the form

iψt = (−∆)mψ + V ψ, x ∈ Rn, m ∈ N.

Here V is a real-valued potential with polynomial decay, |V (x)| ≲ ⟨x⟩−β for some

sufficiently large β > 0, and some smoothness conditions, see [4] or Assumption 1.2

below. Note that when m = 1 this is the classical Schrödinger equation. We consider

the case when (−∆)m+V has an eigenvalue at zero energy in high dimensions n > 4m.

It is well known that there are no threshold obstructions other than eigenfunctions when

n > 4m.
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Denote the free operator by H0 = (−∆)m and the perturbed operator by H =

(−∆)m + V . We study the Lp boundedness of the wave operators, which are defined

by

W± = s – lim
t→±∞

eitHe−itH0 .

For the class of potentials we consider, the wave operators exist and are asymptotically

complete, [17, 19, 1, 11, 18]. Furthermore, the intertwining identity

f(H)Pac(H) = W±f((−∆)m)W ∗
±

holds for these potentials where Pac(H) is the projection onto the absolutely continuous

spectral subspace of H, and f is any Borel function. The intertwining identity and Lp

continuity of the wave operators allows one to obtain Lp-based mapping properties of

operators of the form f(H)Pac(H) from those of the much simpler operators f((−∆)m).

As usual, we begin with the stationary representation of the wave operators

W+u = u− 1

2πi

∫ ∞

0

R+
V (λ)V [R+

0 (λ)−R−
0 (λ)]u dλ,(1)

where RV (λ) = ((−∆)m + V − λ)−1, R0(λ) = ((−∆)m − λ)−1, and the ‘+’ and ‘-’

denote the usual limiting values as λ approaches the positive real line from above and

below, [1, 6]. As in previous works, [4, 5], we consider W+, bounds for W− follow by

conjugation since W− = CW+C, where Cu(x) = u(x). Since the identity operator is

bounded on all Lp spaces, it suffices to control the contribution of the integral involving

the resolvent operators.

In dimensions n > 4m, there are no resonances at the threshold (zero energy),

[6]. This mirrors the case of dimensions n > 4 in the classical (m = 1) Schrödinger

operator where threshold resonances cannot exist. In the classical case, the existence

of threshold eigenvalues limits the upper range of Lp(Rn) boundedness of the wave

operators, generically to 1 ≤ p < n
2
, [24, 9, 25]. Here we prove the analogous result

for the higher order Schrödinger operators in Theorem 1.3 below. Our proof doesn’t

distinguish between m = 1 and m > 1, and hence applies to the classical case as well

where it simplifies the existing arguments.
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Our main result is to control the low energy portion of the evolution when there

is a threshold eigenvalue. Our strategy builds on the approach in [5], extending the

argument to control the singularities in the spectral parameter caused by the eigenvalue.

Using resolvent identity, one has

R+
V =

2k−1∑
j=0

(−1)jR+
0 (VR+

0 )
j + (R+

0 V )kR+
V (VR+

0 )
k.

The contribution of the jth term of the finite sum to (1) is denoted by Wj and the

contribution of the remainder by Wr,k. Wj is unaffected by the existence of threshold

obstructions, while Wr,k is affected only when λ is in a neighborhood of zero. To

make this more precise, take a smooth cut-off function χ ∈ C∞
0 for a sufficiently small

neighborhood of zero, and let χ̃ = 1 − χ be the complementary cut-off away from a

neighborhood of zero. Define

Wlow,ku =
1

2πi

∫ ∞

0

χ(λ)(R+
0 (λ)V )kR+

V (λ)(VR+
0 (λ))

kV [R+
0 (λ)−R−

0 (λ)]u dλ,

Whigh,ku =
1

2πi

∫ ∞

0

χ̃(λ)(R+
0 (λ)V )kR+

V (λ)(VR+
0 (λ))

kV [R+
0 (λ)−R−

0 (λ)]u dλ.

Throughout the paper, we write ⟨x⟩ to denote (1 + |x|2) 1
2 , A ≲ B to say that there

exists a constant C with A ≤ CB, and write a− := a − ϵ and a+ := a + ϵ for some

ϵ > 0. Our main technical result is

Theorem 1.1. Let n > 4m ≥ 4. Assume that |V (x)| ≲ ⟨x⟩−β, where V is a real-

valued potential on Rn and β > n + 4 when n is odd and β > n + 3 when n is even.

If H = (−∆)m + V (x) has an eigenvalue at zero, but no positive eigenvalues, then

Wlow,k extends to a bounded operator on Lp(Rn) for all 1 ≤ p < n
2m

provided that k is

sufficiently large.

We need sufficiently large k when n > 4m due to local singularities of the free

resolvents that are not square integrable. The main novelty is that the arguments are

fairly streamlined, we avoid long operator-valued expansions of the perturbed resolvent

by adapting the methods in [4, 5] to control the singularity as λ→ 0 that occurs when
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there is a zero energy eigenvalue. We further note that no additional decay is needed

on the potential compared to the regular case, [4].

To put this result in the context, recall the first Lp boundedness result in the seminal

paper of Yajima, [20], for m = 1 and 1 ≤ p ≤ ∞ for small potentials. For large

potentials, the main difficulty is in controlling the contribution ofWlow,k. The behavior

of this operator differs in even and odd dimensions. In [20, 21, 22], Yajima removed

smallness or positivity assumptions on the potential for all dimensions n ≥ 3. These

arguments were simplified and Yajima further considered the effect of zero energy

eigenvalues and/or resonances in [23] when n is odd and with Finco in [7] when n is

even for n > 4 to establish boundedness of the wave operators when n
n−2

< p < n
2
.

These results were further extended to show that the range of p is generically 1 ≤ p < n
2

in the presence of a zero energy eigenvalue, and that the upper range of p may be larger

under certain orthogonality conditions, [24, 9, 25].

We now give more details in the case m > 1 to state the new corollary of our result

above on the Lp boundedness of wave operators. Let F(f) denote the Fourier transform

of f .

Assumption 1.2. Fix n > 4m and m ≥ 1. For some 0 < δ ≪ 1, σ > 2n−4m
n−1−δ

+ δ,

assume that the real-valued potential V satisfies the condition∥∥F(⟨·⟩σV (·))
∥∥
L

n−1−δ
n−2m−δ

<∞.

In [4], by adapting Yajima’s m = 1 argument in [20], the first two authors showed

that the contribution of the terms of the Born series may be bounded by

∥Wj∥Lp→Lp ≤ Cj
∥∥F(⟨·⟩σV (·))

∥∥j

L
n−1−δ

n−2m−δ
,

for some constant C > 0. In addition, it was shown that if |V (x)| ≲ ⟨x⟩−β for some

β > n + 5 when n is odd and β > n + 4 when n is even and if k is sufficiently large

(depending on m and n), then Whigh,k is a bounded operator on Lp for all 1 ≤ p ≤ ∞

provided there are no positive eigenvalues. The absence of positive eigenvalues is a

common assumption for higher order operators since there may be positive eigenvalues

even for smooth, compactly supported potentials, see [6].
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Combining these facts with Theorem 1.1, we have the following result.

Corollary 1.3. Fix m ≥ 1 and let n > 4m. Assume that V satisfies Assumption 1.2

and in addition

i) |V (x)| ≲ ⟨x⟩−β for some β > n+ 5 when n is odd and for some β > n+ 4 when n

is even,

ii) H = (−∆)m + V (x) has an eigenvalue at zero energy, but no positive eigenvalues.

Then, the wave operators extend to bounded operators on Lp(Rn) for all 1 ≤ p < n
2m

.

By applying the intertwining identity and the known Lp → Lp′ dispersive bounds

when p′ is the Hölder conjugate of p for the free solution operator e−it(−∆)m , we obtain

the corollary below.

Corollary 1.4. Under the assumptions of Corollary 1.3, for n
n−2m

< p′ ≤ 2 we obtain

the dispersive estimates

∥e−itHPac(H)f∥p ≲ |t|−
n
m
( 1
p′−

1
2
)∥f∥p′ .

The study of the Lp boundedness of the wave operators in the higher order m > 1

case has only recently begun. In the case when there are no eigenvalues or resonances

in the ac spectrum, the case m = 2 and n = 3 was studied by Goldberg and the second

author, [10]. The case n > 2m was studied by the first two authors in [4, 5]. In [2]

the first two authors and Goldberg showed that a certain amount of smoothness of the

potentials is necessary to control the large energy behavior in the Lp boundedness.

In [14], Mizutani, Wan, and Yao considered the case of m = 2 and n = 1 showing

that the wave operators are bounded when 1 < p <∞, but not when p = 1,∞, where

weaker estimates involving the Hardy space or BMO were proven depending on the type

of threshold obstruction. More recently in [8], Galtbayar and Yajima considered the

case m = 2 and n = 4 showing that the wave operators are bounded on 1 < p < ∞ if

zero is regular with restrictions on the upper range of p if zero is not regular depending

on the type of resonance at zero. Mizutani, Wan, and Yao [15, 16] studied the endpoint

behavior and the effect of zero energy resonances when m = 2 and n = 3. This recent
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work on higher order, m > 1, Schrödinger operators has roots in the work of Feng,

Soffer, Wu and Yao [6] which considered time decay estimates between weighted L2

spaces.

The paper is organized as follows. In Section 2 we recall important resolvent expan-

sions and prove Proposition 2.1, which shows Lp boundedness for a class of operators

of the form needed in Theorem 1.1. In Section 3 we prove further resolvent expansions

tailored to the case of zero energy eigenvalues to show that Proposition 2.1 applies

to the operator Wlow,k for large enough k, which suffices to prove Theorem 1.1 and

consequently Theorem 1.3. Finally in Section 4 we provide technical lemmas needed

to prove Proposition 2.1.

2. Operator Bounds

In this section we reduce proving Theorem 1.1 to showing that a certain family of

operators extend to bounded operators on Lp(Rn) on the desired range of p. To do this

we utilize various resolvent expansions and adapt the argument from the case when

zero is regular to account for the extra singularity in the spectral parameter that arises

when (−∆)2m + V has a zero energy eigenvalue.

It is convenient to use a change of variables λ 7→ λ2m to represent Wlow,k

m

πi

∫ ∞

0

χ(λ)λ2m−1(R+
0 (λ

2m)V )kR+
V (λ

2m)(VR+
0 (λ

2m))kV [R+
0 (λ

2m)−R−
0 (λ

2m)] dλ.

We begin by using the symmetric resolvent identity on the perturbed resolvent

R+
V (λ

2m). With v = |V | 12 , U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, we

define M+(λ) = U + vR+
0 (λ

2m)v.

Using the symmetric resolvent identity, one has

(2) R+
V (λ

2m)V = R+
0 (λ

2m)vM+(λ)−1v.

Therefore, we have

Wlow,k =
m

πi

∫ ∞

0

χ(λ)λ−1R+
0 (λ

2m)vΓk(λ)v[R+
0 (λ

2m)−R−
0 (λ

2m)] dλ,

where Γ0(λ) := λ2mM+(λ)−1 and for k ≥ 1
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(3) Γk(λ)

:= UvR+
0 (λ

2m)
(
VR+

0 (λ
2m)

)k−1
v[λ2mM+(λ)−1]v

(
R+

0 (λ
2m)V

)k−1R+
0 (λ

2m)vU.

When zero energy is an eigenvalue, the resolvent RV becomes unbounded as λ → 0.

Under the change of variables the singularity is of order λ−2m. The definition of Γk(λ)

above multiplies M−1(λ) by λ2m to account for this singularity.

To state our main result, we recall the following terminology from previous works

involving wave operators and dispersive estimates. An operator T : L2 → L2 with

integral kernel T (x, y) is absolutely bounded if the operator with kernel |T (x, y)| is

bounded as an operator on L2(Rn). We recall that finite rank operators and Hilbert-

Schmidt operators are absolutely bounded, where T is Hilbert-Schmidt if

∥T∥2HS =

∫
R2n

|T (x, y)|2 dx dy <∞.

Proposition 2.1. Fix n > 4m ≥ 4 and let Γ be a λ dependent operator. Assume that

Γ̃(x, y) := sup
0<λ<λ0

[
sup

0≤ℓ≤⌈n
2
⌉+1

∣∣λℓ∂ℓλΓ(λ)(x, y)∣∣]
satisfies the pointwise estimate

(4) Γ̃(x, y) ≲ ⟨x⟩−
n
2
−⟨y⟩−

n
2
−.

If |V (x)| ≲ ⟨x⟩−β for some β > n⋆ where n⋆ = n+ 4 if n is odd and n⋆ = n+ 3 if n is

even, then the operator with kernel

(5) K(x, y) =

∫ ∞

0

χ(λ)λ−1
[
R+

0 (λ
2m)vΓ(λ)v[R+

0 (λ
2m)−R−

0 (λ
2m)]

]
(x, y)dλ

is bounded on Lp(Rn) for 1 ≤ p < n
2m

.

The claim of Theorem 1.1 follows in Section 3 by showing that Γk(λ) defined in

(3) satisfies the hypotheses of this proposition. To prove the proposition we need the

following representations of the free resolvent, these are Lemma 2.3, 2.4, and Remark

2.5 in [5], which have their roots in [4].
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Lemma 2.2. Let n > 2m ≥ 2. Then, we have the representations

R+
0 (λ

2m)(y, u) =
eiλ|y−u|

|y − u|n−2m
F (λ|y − u|).

and

[R+
0 (λ

2m)−R−
0 (λ

2m)](y, u) = λn−2m
[
eiλ|y−u|F+(λ|y − u|) + e−iλ|y−u|F−(λ|y − u|)

]
,

With the bounds

(6) |∂Nλ F (λr)| ≲ λ−N⟨λr⟩
n+1
2

−2m, |∂Nλ F±(λr)| ≲ λ−N⟨λr⟩
1−n
2 .

for all N ≥ 0.

We say an operator K with integral kernel K(x, y) is admissible if

sup
x∈Rn

∫
Rn

|K(x, y)| dy + sup
y∈Rn

∫
Rn

|K(x, y)| dx <∞.

By the Schur test, it follows that an operator with admissible kernel is bounded on

Lp(Rn) for all 1 ≤ p ≤ ∞. We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Using the representations in Lemma 2.2 with r1 = |x − z1|

and r2 := |z2 − y| we see that K(x, y) is the difference of

(7) K±(x, y)

=

∫
R2n

v(z1)v(z2)

rn−2m
1

∫ ∞

0

eiλ(r1±r2)χ(λ)λn−2m−1Γ(λ)(z1, z2)F (λr1)F±(λr2)dλdz1dz2.

We write

K(x, y) =:
4∑

j=1

Kj(x, y),

where the Kj are K restricted to different regions. K1 is the portion of K restricted

to the set r1, r2 ≲ 1, K2 to the set r1 ≈ r2 ≫ 1, K3 to the set r2 ≫ ⟨r1⟩, and K4 to the

set r1 ≫ ⟨r2⟩. We define Kj,± analogously.

Since both λ and rj ≲ 1 we have λrj ≲ 1. Using the bounds of Lemma 2.2 we bound

the contribution of |K1,±(x, y)| by∫
R2n

v(z1)v(z2)χr1,r2≲1

rn−2m
1

Γ̃(z1, z2)

∫ 1

0

λn−2m−1 dλdz1dz2
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≲
∫
R2n

v(z1)v(z2)χr1,r2≲1

rn−2m
1

Γ̃(z1, z2)dz1dz2,

since n− 2m− 1 > −1. Using the pointwise decay of v and Γ̃ in (4), we obtain∫
|K1,±(x, y)|dy ≲

∫
⟨z1⟩−n−⟨z2⟩−n−r2m−n

1 dz1dz2 ≲ 1,

uniformly in x. By the symmetry between x and y which implies that K1 is admissible.

For K2, we consider the contribution of K2,− since the K2,+ is simpler. We integrate

by parts twice in the λ integral when λ|r1 − r2| ≳ 1 (using (6) and the definition of Γ̃)

and estimate directly when λ|r1 − r2| ≪ 1 to obtain

|K2,−(x, y)| ≲∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2m
1

∫ ∞

0

χ(λ)λn−2m−1χ(λ|r1 − r2|)⟨λr1⟩1−2mdλdz1dz2

+

∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2m
1

∫ ∞

0

χ(λ)λn−2m−3χ̃(λ|r1 − r2|)⟨λr1⟩1−2m

|r1 − r2|2
dλdz1dz2

≲
∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2m
1

∫ ∞

0

χ(λ)λn−2m−1⟨λr1⟩1−2m

⟨λ(r1 − r2)⟩2
dλdz1dz2.

Noting that 1−2m < 0, we can integrate this bound with respect to x after converting

to polar coordinates centered around z1 to bound by∫
|K2,−(x, y)|dx ≲∫

R2n

∫ 1

0

∫
r1≈r2≫1

v(z1)Γ̃(z1, z2)v(z2)r
n−1
1

λn−2m−1(λr1)
1−2m

rn−2m
1 ⟨λ(r1 − r2)⟩2

dr1dλdz1dz2

≲
∫
R2n

∫ 1

0

∫
r1≈r2≫1

v(z1)Γ̃(z1, z2)v(z2)
λn−4m

⟨λ(r1 − r2)⟩2
dr1dλdz1dz2

≲
∫
R2n

∫ 1

0

∫
R
v(z1)Γ̃(z1, z2)v(z2)

λn−4m−1

⟨η⟩2
dηdλdz1dz2 ≲ 1,

uniformly in y. In the second line we defined η = λ(r1 − r2) in the r1 integral and

used n − 4m − 1 ≥ 0. Since r1 ≈ r2, the integral in y can be bounded uniformly in x

similarly and hence the contribution of K2 is admissible.

We now consider the contribution of
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(8) K4,±(x, y) =

∫
R2n

v(z1)v(z2)χr1≫⟨r2⟩

rn−2m
1∫ ∞

0

eiλ(r1±r2)F (λr1)χ(λ)Γ(λ)(z1, z2)λ
n−2m−1F±(λr2) dλdz1dz2.

When λr1 ≲ 1, using (6), we bound |F±(λr2)|, |F (λr1)| ≲ 1 and estimate the λ integral

by r2m−n
1 Γ̃(z1, z2), whose contribution to K4 is bounded by

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χr1≫⟨r2⟩

r
n−2m+(n−2m)
1

dz1dz2.

Where apply Lemma 4.1 with ℓ = n− 4m and k = n− 2m to show that that K4,± are

admissible kernels.

When λr1 ≳ 1, we integrate by parts N = ⌈n
2
⌉ + 1 times (using (6)) to obtain the

bound

1

|r1 ± r2|N

∫ ∞

0

∣∣∣∂Nλ [
F (λr1)χ̃(λr1)χ(λ)λ

n−2m−1Γ(λ)(z1, z2)F±(λr2)
]∣∣∣dλ

≲ r−N
1

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
n+1
2

−2m−j1r
n+1
2

−2m

1 λn−2m−1−j2
∣∣∂j3λ Γ(λ)(z1, z2)

∣∣ λ−j4

⟨λr2⟩
n−1
2

dλ

≲ r
n+1
2

−2m−N

1 Γ̃(z1, z2)
∑

0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
3n−1

2
−4m−j1−j2−j3−j4⟨λr2⟩

1−n
2 dλ

≲ r
n+1
2

−2m−N

1 Γ̃(z1, z2)

∫ 1

1
r1

λ
3n−1

2
−4m−N

⟨λr2⟩
n−1
2

dλ

Since n−1
2
> 0 the contribution of ⟨λr2⟩ can be ignored. Since n > 4m, n−4m ≥ 1 and

3n− 1

2
− 4m−N ≥ 1 +

n

2
− 1

2
−
⌈n
2

⌉
− 1 ≥ −1.

This gives us that the contribution from the λ integral is bounded by log(r1) ≲ r
1
4
1 .

This gives us the total contribution to K4 of

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)

r
n
2
− 3

4
+N

1

dz1 dz2.
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Noting that ⌈n
2
⌉+ n

2
+1− 3

4
≥ n+ 1

4
, again using that r1 ≫ r2, the contribution of this

to (8) is bounded by ∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≫⟨r2⟩

r
n+ 1

4
1

dz1dz2,

which is admissible by Lemma 4.1.

We now considerK3 which restricts the upper portion of the range of p to 1 ≤ p < n
2m

.

Using Lemma 2.2 we write

(9) K3(x, y) :=

∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2m
1

dz1 dz2∫ ∞

0

eiλ(r1±r2)F (λr1)χ(λ)λ
n−2m−1Γ(λ)(z1, z2)F±(λr2) dλdz1dz2.

When λr2 ≲ 1, we can apply (6) to obtain the bound∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2m
1

Γ̃(z1, z2)

∫ r−1
2

0

⟨λr1⟩
n+1
2

−2mλn−2m−1⟨λr2⟩
1−n
2 dλdz1dz2

≲
∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2m
1

Γ̃(z1, z2)

∫ r−1
2

0

λn−2m−1 dλdz1dz2

≲
∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2m
1 rn−2m

2

Γ̃(z1, z2),

which is bounded when 1 ≤ p < n
2m

by Lemma 4.3 with k = ℓ = 0.

When λr2 ≳ 1, we integrate by parts N = ⌈n
2
⌉ + 1 times (using (6)) to obtain the

bound

1

|r1 ± r2|N

∫ ∞

0

∣∣∣∂Nλ [
F (λr1)χ̃(λr2)χ(λ)λ

n−2m−1Γ(λ)(z1, z2)F±(λr2)
]∣∣∣dλ

≲ r−N
2

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r2

λ−j1⟨λr1⟩
n+1
2

−2mλn−2m−1−j2
∣∣∂j3λ Γ(λ)(z1, z2)

∣∣λ 1−n
2

−j4

r
n−1
2

2

dλ

≲ r
1−n
2

−N

2 Γ̃(z1, z2)
∑

0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r2

λ
n−1
2

−2m−j1−j2−j3−j4⟨λr1⟩
n+1
2

−2mdλ

≲ r
1−n
2

−N

2 Γ̃(z1, z2)

∫ 1

1
r2

λ
n−1
2

−2m−N⟨λr1⟩
n+1
2

−2mdλ.
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Here we note that derivatives of χ̃(λr2) are comparable to division by λ. We consider

the cases when λr1 ≳ 1 and λr1 ≲ 1 as follows:

r
1−n
2

−N

2 Γ̃(z1, z2)

∫ 1

1
r2

λ
n−1
2

−2m−N⟨λr1⟩
n+1
2

−2mdλ

≲ r
−n−1

2
−N

2 Γ̃(z1, z2)
(∫ min( 1

r1
,1)

1
r2

λ
n
2
−2m−N− 1

2χ(λr1)dλ

+

∫ 1

min( 1
r1

,1)

r
n+1
2

−2m

1 λn−4m−N χ̃(λr1)dλ
)
.

Since n
2
−2m−N− 1

2
= n

2
−⌈n

2
⌉−2m− 3

2
≤ −3

2
, the first integral is at most r

2m−n
2
+N− 1

2
2 ,

so its contribution to (9) is at most

(10)

∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2m
1 rn−2m

2

Γ̃(z1, z2)dz1dz2,

which is bounded for 1 ≤ p < n
2m

by Lemma 4.3.

Similarly, after multiplying the second integral by (λr1)
N−1 ≳ 1,∫ 1

min( 1
r1

,1)

r
n+1
2

−2m

1 λn−4m−N χ̃(λr1)dλ ≲
∫ 1

min( 1
r1

,1)

r
n+1
2

−2m+N−1

1 λn−4m−1dλ,

since n − 4m − 1 ≥ 0, the λ integral is bounded and the contribution is bounded by

r
n+1
2

−2m+N−1

1 . Letting {n/2} = ⌈n/2⌉ − n/2, the second integral’s contribution to (9)

is at most∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩r
N−n

2
− 1

2
1

r
N+n

2
− 1

2
2

Γ̃(z1, z2)dz1dz2

=

∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩r
{n/2}+ 1

2
1

r
n+{n/2}+ 1

2
2

Γ̃(z1, z2)dz1dz2,

which is admissible for all 1 ≤ p ≤ ∞ by Lemma 4.2. □

3. Resolvent and Inverse Expansions

It remains only to prove that the operators Γk(λ) defined in (3) satisfy the bounds

(4) needed to apply Proposition 2.1. In this section we develop different resolvent

expansions and develop an expansion ofM+(λ)−1 for small λ when there is a threshold
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eigenvalue. Throughout this section we consider the ‘+’ limiting operators and omit

the superscript.

Recall that n⋆ = n + 4 if n is odd and n⋆ = n + 3 if n is even. The bounds in

Lemma 2.2 imply that the operator Rℓ with kernel

(11) Rℓ(x, y) := v(x)v(y) sup
0<λ<λ0

|λℓ∂ℓλR+
0 (λ

2m)(x, y)|

satisfies

Rℓ(x, y) ≲ v(x)v(y)
(
|x− y|2m−n + |x− y|ℓ−(n−1

2
)
)
, ℓ ≥ 0.

This pointwise bound implies that Rℓ is bounded on L2(Rn) for 0 ≤ ℓ ≤ ⌈n
2
⌉ + 1

provided that |V (x)| ≲ ⟨x⟩−β for some β > n⋆, see [4, 5].

We write the iterated resolvent operators

A(λ, z1, z2) =
[(
R+

0 (λ
2m)V

)k−1R+
0 (λ

2m)
]
(z1, z2).(12)

For odd dimensions n > 4m, if k is sufficiently large depending on n,m and |V (x)| ≲

⟨x⟩−n⋆−, then

sup
0<λ<1

|λℓ∂ℓλA(λ, z1, z2)| ≲ ⟨z1⟩2⟨z2⟩2,

for 0 ≤ ℓ ≤ n+3
2

= ⌈n
2
⌉+ 1. This follows from the pointwise bounds on Rℓ above. The

iteration of the resolvents smooths out the local singularity |x− ·|2m−n. Each iteration

improves the local singularity by 2m, so that after ℓ iterations the local singularity

is of size |x − ·|2mℓ−n. Selecting k large enough ensures that the local singularity is

completely integrated away. See the proofs of Propositions 5.3 and 6.5 in [4] for more

details. For even n > 4m, since we need fewer derivatives we have

sup
0<λ<1

|λℓ∂ℓλA(λ, z1, z2)| ≲ ⟨z1⟩
3
2 ⟨z2⟩

3
2 ,

for 0 ≤ ℓ ≤ n+2
2

= ⌈n
2
⌉+ 1. More compactly, we have that

sup
0<λ<1

|λℓ∂ℓλA(λ, z1, z2)| ≲ ⟨z1⟩{
n
2
}+ 3

2 ⟨z2⟩{
n
2
}+ 3

2 , 0 ≤ ℓ ≤ ⌈n
2
⌉+ 1.

Finally, recalling that

Γk(λ) = UvA(λ)vλ2mM−1(λ)vA(λ)vU,
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our goal is to show that sup0<λ<λ0
|λℓ+2m∂ℓλ[M(λ)]−1(x, y)| is bounded on L2 for each

0 ≤ ℓ ≤ ⌈n
2
⌉+ 1.

We then define the following operators or their integral kernels

G0(x, y) :=a0|x− y|2m−n = R0(0)(x, y),

T0 :=U + vG0v.

Here a0 ̸= 0 is a real constant depending on m and n. Recall that the invertibility of

T0 on L2(Rn) is equivalent to the absence of a threshold eigenvalue when n > 4m, see

[6]. We further define S1 to be the Riesz projection onto the kernel of T0 so that the

operator T0 + S1 is invertible, and we define

D0 :=(T0 + S1)
−1.

From Proposition 2.4 in [6], we have

(13) R0(λ
2m)(x, y) =

N−1∑
j=0

λ2mjGj(x, y) + cn,mλ
n−2m + E0(λ)(x, y)

with N = ⌊ n
2m

⌋. Here

Gj(x, y) = cj,n,m|x− y|2m−n+2mj, j = 0, ..., N − 1.

The exact value of these constants is unimportant for our purposes. We note that these

expansions follow from those of the Schrödinger resolvents R0(z) = (−∆ − z)−1 and

the splitting identity

R0(z)(x, y) := ((−∆)m − z)−1(x, y) =
1

mz1−
1
m

m−1∑
ℓ=0

ωℓR0(ωℓz
1
m )(x, y),

where ωℓ = exp(i2πℓ/m) are themth roots of unity. The expansions utilize a significant

amount of cancellation obtained from the splitting identity and the sum over the roots

of unity. See also the proofs of Lemma 4.2 and 6.2 in [4].

We note that the error bounds for E0(λ) in [6] don’t suffice for our purposes, instead

we develop shorter expansions with more detailed control of the error term. We make

this more precise with the following lemmas.
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Lemma 3.1. When 0 < λ < λ0 and 0 ≤ ℓ ≤ ⌈n
2
⌉+ 1, we have

R0(λ) = G0 + λ2mG1 + E(λ)

where for any 0 < ϵ < 1 we have

λℓ|∂ℓλE(λ)(x, y)| ≲ λ2m+ϵ[|x− y|{
n
2
}+ 3

2 + |x− y|4m−n+ϵ],

where {n/2} = ⌈n/2⌉ − n/2.

Proof. We need to consider cases as the resolvents behave differently in even and odd

dimensions and based on the size of λ|x − y|. When n is odd and λ|x − y| ≪ 1, we

have from Lemma 2.3, equation (2.2), and Remark 2.2 in [6] that

R0(λ
2m)(x, y) =

N−1∑
j=0

cj,n,mλ
2mj|x− y|2m−n+2mj + cn,mλ

n−2m|x− y|0

+
∞∑
j=0

cj,n,mλ
2mN+j|x− y|2m−n+2mN+j

with N = ⌊ n
2m

⌋. Truncating after the first two terms of the series yields the expansion

with

E(λ) =
∞∑
k=1

ckλ
2m+k|x− y|4m−n+k, λ|x− y| ≪ 1.

Note that many ck may be zero, this doesn’t affect our bounds. This implies that for

any ℓ we have

λℓ
∣∣∂ℓλE(λ)(x, y)χ(λ|x− y|)

∣∣ ≲ λ2m+1|x− y|4m−n+1,

which suffices for small λ|x− y|.

When n is even, there are logarithms when λ|x− y| ≪ 1 that we must account for.

Using Lemma 2.1 and Lemma 2.3 in [6], (see also the expansion after Lemma 6.2 in

[4]) we have the following representation

R0(λ
2m) =

⌈ n
2m

⌉−1∑
k=0

akλ
2mk|x− y|2m(k+1)−n +

∞∑
j=0

bjλ
n−2m+2j|x− y|2j

+
∞∑

k=⌈ n
2m

⌉

ckλ
2m(k−1)|x− y|2mk−n

(
ln(|x− y|) + lnλ

)
.
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However, since the first logarithm appears with a power of λ at least as large as n−2m

since ⌈ n
2m

⌉ ≥ 3, the logarithms don’t affect the required bound and

E(λ) =

⌈ n
2m

⌉−1∑
k=2

akλ
2mk|x− y|2m(k+1)−n +

∞∑
j=0

bjλ
n−2m+2j|x− y|2j

+
∞∑

k=⌈ n
2m

⌉

ckλ
2m(k−1)|x− y|2mk−n

(
ln(|x− y|) + lnλ

)
.

The first two sums with only powers of λ|x−y| are controlled as in the odd n argument.

For the logarithms, since k − 1 ≥ 2, the largest possible contribution is of the form

λ4m|x− y|6m−n ln(λ|x− y|) ≲ λ4m−1|x− y|6m−n−1,

using log(z) ≲ z−1 when z ≲ 1. We may further divide by powers of (λ|x − y|) to

match the polynomial bound as needed. Since m ≥ 1, we have

λℓ
∣∣∂ℓλE(λ)(x, y)χ(λ|x− y|)

∣∣ ≲ λ2m+1|x− y|4m−n+1,

which suffices for small λ|x− y|.

The bound on the error term when λ|x−y| ≳ 1 follows from the bounds in Lemma 2.3

of [5] and the definition of the kernels of G0, G1, we have

λℓ|∂ℓλE(λ)| = λℓ∂ℓλ
[
R0(λ

2m)−G0(x, y)− λ2mG1(x, y)
]

≲ λ
n+1
2

−2m+ℓ|x− y|
1−n
2

+ℓ + |x− y|2m−n + λ2m|x− y|4m−n.

We note that 1−n
2

+ ℓ ≤ 1−n
2

+ ⌈n
2
⌉+1 = {n

2
}+ 3

2
, and n+1

2
− 2m+ ⌈n

2
⌉+1 > 2m. Since

λ|x− y| ≳ 1 and λ ≲ 1, we can bound this by

λℓ|∂ℓλE(λ)χ̃(λ|x− y|)| ≲ λ2m+ϵ[|x− y|{
n
2
}+ 3

2 + |x− y|4m−n+ϵ].

□

To invert M(λ) in a neighborhood of the threshold, we utilize the Jensen-Nenciu

inversion scheme in [13], which requires some set up. We introduce some notation
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to help streamline the upcoming statements and proofs. For an absolutely bounded

operator T (λ) on L2(Rn) we write T (λ) = ON(λ
j) to mean that

∥λℓ|∂ℓλT (λ)| ∥L2→L2 ≲ λj, 0 ≤ ℓ ≤ N for 0 < λ < λ0.

We note that, if S, T satisfy S(λ) = ON(λ
j) and T (λ) = ON(λ

k), by the product rule

the composition of the operators ST is absolutely bounded and satisfies

S(λ)T (λ) = ON(λ
j+k) on (0, λ0).

Similarly,

λjT (λ) = ON(λ
j+k) on (0, λ0).

In particular, if R is an absolutely bounded operator on L2, then

T (λ)R, RT (λ) = ON(λ
k) on (0, λ0).

Of particular use is the observation that if T (λ) = O⌈n
2
⌉+1(λ

0), then

sup
0<λ<λ0

sup
0≤ℓ≤⌈n

2
⌉+1

λℓ|∂ℓλT (λ)|

is a bounded operator on L2(Rn).

Finally, we have

Lemma 3.2. If Γ is a λ-independent, invertible, absolutely bounded operator on L2

with an absolutely bounded inverse, then for ϵ > 0, we have (for sufficiently small λ0)

[Γ +ON(λ
ϵ)]−1 = Γ−1 +ON(λ

ϵ) = ON(λ
0).

Proof. This is just a Neumann series expansion for N = 0. For derivatives (1 ≤ ℓ ≤ N),

note that λℓ∂ℓλ
[
[Γ +ON(λ

ϵ)]−1 − Γ−1
]
is a linear combination of operators of the form

[Γ +ON(λ
ϵ)]−1

J∏
j=1

[
λℓj∂

ℓj
λ ON(λ

ϵ)[Γ +ON(λ
ϵ)]−1

]
= O0(λ

ϵ).

Here J ≥ 1, 1 ≤ ℓj ≤ N with
∑
ℓj = ℓ. □

Our main result is the following proposition:
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Proposition 3.3. If β > n⋆ and there is a zero energy eigenvalue, the operator M(λ)

is invertible on L2 for sufficiently small 0 < λ < λ0. Furthermore, we have

M−1(λ) = O⌈n
2
⌉+1(λ

−2m).

By the discussion above, these bounds onM−1(λ) will suffice to allow us to establish

that the operators Γk satisfy the hypotheses of Proposition 2.1. To this end, we have

the following series of lemmas.

Lemma 3.4. If β > n⋆, then for sufficiently small λ the operatorM(λ)+S1 is invertible

on L2 with

(M(λ) + S1)
−1 = O⌈n

2
⌉+1(λ

0).

Further, for any 0 < ϵ < 1, on 0 < λ < λ0 we have

(M + S1)
−1 = D0 − λ2mD0T1D0 +O⌈n

2
⌉+1(λ

2m+ϵ),

where T1 = vG1v.

Proof. For the first claim, recall that by Lemma 3.1, we have

M(λ) = U + vR0(λ
2m)v = U + v(G0 + λ2mG1 + E(λ))v,

where for 0 ≤ ℓ ≤ ⌈n
2
⌉+ 1

λℓ|∂ℓλvE(λ)v| ≲ λ2m+ϵv(x)|x− y|{
n
2
}+ 3

2v(y) + λ2m+ϵv(x)|x− y|4m−n+ϵv(y).

The first term is Hilbert-Schmidt when β > n⋆ since

[v(x)|x− y|{
n
2
}+ 3

2v(y)]2 ≤ ⟨x⟩−n−⟨y⟩−n−.

In dimensions 4m < n ≤ 8m, the second term is Hilbert-Schmidt under weaker decay

assumptions than β > n⋆. On the other hand, if n > 8m, the resulting kernel is too

singular to be Hilbert-Schmidt, instead we identify |x − y|4m−n+ϵ as a scalar multiple

of the fractional integral operator I4m+ϵ. By Lemma 2.3 in [12], I4m+ϵ is bounded

from L2,s → L2,−s provided s > 2m + ϵ
2
. This suffices to show the L2 boundedness of
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v(x)λℓ|∂ℓλE(λ)|v(y) in dimensions n > 8m since v(x) ≲ ⟨x⟩−β
2 with β > n∗ > 4m + 3.

We conclude that

M(λ) = T0 + λ2mT1 +O⌈n
2
⌉+1(λ

2m+ϵ).

We claim that D0 is an absolutely bounded operator. To see this, first note that the

argument of Lemma 4.3 in [3] may be adapted since, by the argument above, vG0v is

absolutely bounded. Here one needs to iterate the resolvent identity sufficiently since

(vG0v)
k is Hilbert-Schmidt for sufficiently large k while vG0v itself is not. We leave

the details to the interested reader.

Since T0+S1 is invertible on L
2 with an absolutely bounded inverse, by Lemma 3.2,

we have

[M(λ) + S1]
−1 = O⌈n

2
⌉+1(λ

0).

To obtain the second claim, we utilize the resolvent identity A−1 = B−1 +B−1(B −

A)A−1 with A = (M(λ) + S1) and B = T0 + S1. From this, we see that

[M(λ) + S1]
−1 = D0 −D0[M(λ)− T0]D0 + (D0[M(λ)− T0])

2[M(λ) + S1]
−1.

Note that M(λ)− T0 = λ2mT1 +O⌈n
2
⌉+1(λ

2m+ϵ) = O⌈n
2
⌉+1(λ

2m). Therefore,

[M(λ) + S1]
−1 = D0 − λ2mD0T1D0 +O⌈n

2
⌉+1(λ

2m+ϵ) +O⌈n
2
⌉+1(λ

4m),

which suffices. □

To utilize the Jensen-Nenciu inversion machinery, Corollary 2.2 in [13], we need to

invert the operator
1

λ2m
(S1 − S1(M(λ) + S1)

−1S1)

on S1L
2. To do so, we note that S1D0 = D0S1 = S1 so that the leading S1 cancels and

consider the operator

(14) B(λ) = λ−2m[S1 − S1(M(λ) + S1)
−1S1] = S1T1S1 − S1λ

−2mO⌈n
2
⌉+1(λ

2m+ϵ)S1

= S1T1S1 + S1O⌈n
2
⌉+1(λ

ϵ)S1.

We now have
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Lemma 3.5. If β > n⋆, for sufficiently small λ the operator B(λ) is invertible on

S1L
2. Further, we have

B−1(λ) = O⌈n
2
⌉+1(λ

0)

as an operator on S1L
2.

Proof. Using the expansion in (14), we note that T1 is an invertible operator on S1L
2

(c.f. Definition 2.6 and Remark 2.7 in [6]). Since S1L
2 is finite dimensional, T1 and its

inverse are absolutely bounded. The claim now follows from Lemma 3.2. □

We are now ready to prove Proposition 3.3:

Proof. By the Jensen-Nenciu inversion technique, [13], we have

M−1(λ) = (M(λ) + S1)
−1 + λ−2m(M(λ) + S1)

−1S1B
−1(λ)S1(M(λ) + S1)

−1,(15)

provided that B(λ) is invertible on S1L
2(Rn). Therefore, the claim follows from Lem-

mas 3.4 and 3.5. □

We are now ready to prove the main technical result.

Proof of Theorem 1.1. Proposition 3.3 shows that sup0<λ<λ0
|λℓ+2m∂ℓλ[M(λ)]−1(x, y)| is

L2 bounded for all 0 ≤ ℓ ≤ ⌈n
2
⌉ + 1. By (2), the definition of Wlow,k, Γk(λ) and the

discussion following (12), we see that the operator Γk(λ) satisfies the hypotheses of

Proposition 2.1.

□

4. Technical Lemmas

For completeness, we include necessary lemmas about the Lp(Rn) boundedness of

certain integral kernels that are needed in the proof of Proposition 2.1. We use the

two Lemmas below about admissible kernels, which are Lemmas 4.1 and 4.2 in [5]

respectively.

Lemma 4.1. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| ≲
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|≫⟨z1−x⟩}

|x− z1|n−2m−k|z2 − y|n+ℓ
dz1 dz2
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for some 0 ≤ k ≤ n − 2m and ℓ > 0. Then, under the hypotheses of Lemma 2.1, the

kernel of K is admissible, and consequently K is a bounded operator on Lp(Rn) for all

1 ≤ p ≤ ∞.

Lemma 4.2. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| ≲
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|≫⟨z1−x⟩}|x− z1|ℓ

|z2 − y|n+ℓ
dz1 dz2

for some ℓ > 0. Then, under the hypotheses of Proposition 2.1, the kernel of K is

admissible, and consequently K is a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.

We also need the following new bounds for the analysis of K3.

Lemma 4.3. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| ≲
∫
Rn

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|≫⟨z1−x⟩}

|x− z1|n−2m−ℓ|y − z2|n−2m+k
dz1dz2

for some −2m < k < 2m with ℓ < k + n − 4m. Then, under the hypotheses of

Proposition 2.1, K is a bounded operator on Lp(Rn) for 1 ≤ p < n
2m−k

.

Proof. We show that ∥K(x, y)∥
Lp′
y Lp

x
is bounded. Using the assumptions on Γ̃ in Propo-

sition 2.1, provided that n
n−2m+k

< p′ ≤ ∞ or equivalently 1 ≤ p < n
2m−k

, we may take

the Lp′
y norm to bound (recall that r1 = |x− z1| and r2 = |z2 − y|)

∥K(x, y)∥
Lp′
y Lp

x
≲
∥∥∥⟨z1⟩−β+n

2 ⟨z2⟩−
β+n
2 r2m+ℓ−n

1 ⟨r1⟩2m−n−k+n/p′
∥∥∥
L1
z1

L1
z2

Lp
x

≲
∥∥∥⟨z1⟩−β+n

2 ⟨z2⟩−
β+n
2 r2m−n+ℓ

1 ⟨r1⟩2m−k−n/p
∥∥∥
L1
z1

L1
z2

Lp
x

.(16)

We then consider cases to control the upper bound in (16); when r1 ≲ 1 and r1 ≳ 1.

If r1 ≳ 1, we can directly take the Lp
x norm since 4m− n− (k − ℓ) < 0 to see∥∥∥⟨z1⟩−β+n

2 ⟨z2⟩−
β+n
2 r2m−n+ℓ

1 ⟨r1⟩2m−k−n/pχr1≫1

∥∥∥
Lp
xL1

z1
L1
z2

≲
∥∥∥⟨z1⟩−β+n

2 ⟨z2⟩−
β+n
2 r

4m−n−n/p−(k−ℓ)
1 χr1≫1

∥∥∥
Lp
xL1

z1
L1
z2

≲
∥∥∥⟨z1⟩−β+n

2 ⟨z2⟩−
β+n
2

∥∥∥
L1
z1

L1
z2

≲ 1,

since β > n.
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On the other hand, when r1 ≲ 1, we leverage the decay of v(z1) and since all

quantities are non-negative take the L1
z1

norm first. Converting to polar coordinates

centered around x, and using that ⟨z1⟩ ≈ ⟨x⟩, we have

∥∥∥⟨z1⟩−β+n
2 ⟨z2⟩−

β+n
2 r2m−n+ℓ

1 ⟨r1⟩2m−n−k+n−n/pχr1≲1

∥∥∥
L1
z1

L1
z2

Lp
x

≲

∥∥∥∥⟨z2⟩−β+n
2 ⟨x⟩−

β+n
2

∫ 1

0

r2m+ℓ−1dr

∥∥∥∥
L1
z2

Lp
x

≲
∥∥∥⟨z2⟩−β+n

2 ⟨x⟩−
β+n
2

∥∥∥
L1
z2

Lp
x

≲ 1,

since 2m+ ℓ− 1 > −1 and β > n.

Therefore the kernel of K is a bounded operator on Lp(Rn) for 1 ≤ p < n
2m−k

. □
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[7] D. Finco, and K. Yajima, The Lp boundedness of wave operators for Schrödinger operators with

threshold singularities II. Even dimensional case. J. Math. Sci. Univ. Tokyo 13 (2006), no. 3,

277–346.

[8] A. Galtbayar, and K. Yajima. The Lp-boundedness of wave operators for fourth order Schrödinger

operators on R4. J. Spectr. Theory 14 (2024), 271–354.

[9] M. Goldberg and W. Green, The Lp boundedness of wave operators for Schrödinger operators with

threshold singularities. Adv. Math. 303 (2016), 360–389.

[10] M. Goldberg, and W. Green, On the Lp boundedness of the Wave Operators for fourth order

Schrödinger operators,. Trans. Amer. Math. Soc. 374 (2021), 4075–4092.
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