
Notes on Factoring
MA 206

The General Approach

Suppose I hand you n, a 200 digit integer and tell you that n is composite,
with smallest prime factor around 50 digits. Finding a nontrivial factor of n
will be extremely difficult. Now suppose I give you another number m, also
200 digits, and ask you to find a factor. Looks like I’ve doubled your work.
But if I tell you that m and n share a common factor, your task is almost
trivial: just compute (m,n) with Euclid’s Algorithm, which is very fast. If
m and n share a divisor then (m,n) > 1 and you’ve got a proper divisor of
n (unless n|m). This is the idea of most factorization methods—to find a
factor of n we try to cook up a second number m such that (m, n) > 1.

One common strategy for finding such a factor is to look for solutions to
the congruence

x2 ≡ y2 (mod n). (1)

Suppose we find such a solution. Suppose also (as is likely—see below) it
turns out that x 6= ±y (mod n). Then (x−y, n) > 1 and (x+y, n) > 1, and so
we’ve found a proper factor of n, for equation (1) really says that n|(x2−y2),
or equivalently n|(x−y)(x+y). But if x 6= ±y (mod n) then n doesn’t divide
x− y or x + y. Therefore n = n′n′′ where n′|(x− y) and n′′|(x + y). Clearly
n′, n′′ > 1, and so (x− y, n) ≥ n′ > 1 and (x + y, n) ≥ n′′ > 1.

The methods for factoring described below all look for solutions to equa-
tion (1). They don’t specifically enforce x 6= ±y (mod n), but rather hope
that this is true so that (x−y, n) and/or (x+y, n) will yield nontrivial factors
of n. What are the odds that this will be true?

Lemma: Let n be odd and composite, with at least two distinct prime
factors. For any fixed y, at least 1/2 of the x which satisfy x2 ≡ y2 (mod n)
for y 6= 0 also satisfy x 6= ±y (mod n).

Proof: We already essentially proved this, when we did “coin flipping by
telephone.” But I’ll give a quick recap.

If n is odd and composite with at least two distinct prime factors then
we can write n = n′n′′ where (n′, n′′) = 1 and of course both are odd and
greater than 1. You can easily check that

x2 ≡ y2 (mod n) ⇐⇒ x2 ≡ y2 (mod n′), x2 ≡ y2 (mod n′′).

1

(This doesn’t rely on n being odd, just (n′, n′′) = 1). Now consider the
congruence x2 ≡ y2 (mod n′). This has AT LEAST two solutions for x,
namely x ≡ ±y. Note that because n′ is odd, y and −y must be distinct
(mod n′), so this really is two solutions. There may be more. Let x1 ≡
y (mod n′). Similar remarks apply to x2 ≡ y2 (mod n′′); let x2 ≡ y (mod n′′).
Now choose integers r and s so that rn′ + sn′′ = 1. Again, we’re using
(n′, n′′) = 1. Consider the four possible values of x defined by

x = ±sn′′x1 ± rn′x2 (mod n)

obtained by taking all possible ± combinations. You can easily check that
all four values are distinct (mod n), and all satisfy both x2 ≡ y2 (mod n′)
and x2 ≡ y2 (mod n′′), and hence x2 ≡ y2 (mod n). We conclude that
x2 ≡ y2 (mod n) has AT LEAST 4 solutions, only two of which are x ≡
±y (mod n). This proves the assertion. In the case that n = pq you can
check that there are exactly four solutions (this is exactly what we did in
coin flipping by telephone).

Kraitchik’s Algorithm

This is best done with an example. Let’s factor n = 18601. Define the
polynomial Q(x) = x2 − n and let x0 = [

√
n]. In this case x0 = 136. Let

xk = x0+k and compute Q(xk) for a few values of k. You obtain the following

k xk Q(xk)
1 137 168 = (23)(3)(7)
2 138 443 = (443)
3 139 720 = (24)(32)(5)
4 140 999 = (33)(37)
5 141 1280 = (28)(5)

Now notice that Q(139)Q(141) = 2123252 = (26 · 3 · 5)2 = 9602 is a perfect
square. Put another way,

(1392 − n)(1412 − n) = 9602.

Modulo n this is simply
(139 · 141)2 ≡ 9602

2

and we have a solution to x2 ≡ y2 (mod n), with x ≡ (139)(141) (mod n) =
998 and y ≡ 960 (mod n) = 960. Now compute

(18601, 998 + 960) = 979, (18601, 998− 960) = 19

and we have nontrivial factors of n.
The general procedure for Kraitchik’s algorithm is this. Given an integer

n to factor, we let Q(x) = x2 − n and x0 = [
√

n]. We then consider Q(xk)
with xk = x0 + k for k = 1, 2, We look for products of the Q(xk) which
form perfect squares. If we find that

Q(xk1)Q(xk2) · · ·Q(xkm) = y2

then, noting that this is just (x2
k1
− n) · · · (x2

km
− n), it follows that modulo

n we have
x2

k1
· · · x2

km
≡ y2,

so we have a solution to x2 ≡ y2 (mod n) with x = xk1 · · ·xkm and y =√
Q(xk1) · · ·Q(xkm). We then compute (x ± y, n) and hope it provides a

nontrivial factor of n. If it doesn’t we look for another combination of the
Q’s that form a perfect square and try again.

Note that there is nothing absolutely necessary about using xk = [
√

n]+k;
any choice for integers xk can work, but this choice for xk has the advantage
that Q(xk) will be relatively small (compared to n) if k is small (think about
it). As a result Q(xk) is more likely to factor into smaller primes, making
the task of combining the Q’s to form perfect squares easier.

The Morrison-Brillhart Algorithm

I’ll explain this in two steps. The first obvious difficulty for the above
algorithm is that forming a perfect square from the Q’s appears to be a trial
and error method. For a computer program it would be nice to have a more
systematic approach. Here is one such approach.

Let us choose a “factor base” B consisting of small primes. As an example,
for n = 18601 we’ll choose B = [2, 3, 5, 7, 11], the first 5 primes. As before, we
let xk = [

√
n] + k and we compute Q(xk) for k = 1, 2, We find Q(137) =

168. Note that 168 factors over B, i.e., 168 can be expressed entirely in terms
of the primes in B, as 168 = (23)(3)(7). However, Q(138) = 443 does not
factor over B, so discard it. But Q(139) = 720 = (24)(32)(5) factors over

3

B. Do this for a few values of k and collect the results in the table below,
listing with each value of Q(xk) that splits over B the corresponding power
to which each prime appears in the factorization of Q(xk):

k xk Q(xk) 2 3 5 7 11
1 137 168 3 1 0 1 0
3 139 720 4 2 1 0 0
5 141 1280 8 0 1 0 0
7 143 1848 3 1 0 1 1
13 149 3600 4 2 2 0 0
15 151 4200 3 1 2 1 0

Now look for linear combinations of the rows of the table above which add up
to even powers for each prime. For example, the k = 3 and k = 5 rows add
to give the “exponent vector” [12 2 2 0 0], corresponding to a perfect square
2123252. In fact, the table above encodes more information than needed to
look for perfect squares. What we should really do is take the exponents
modulo 2, so 0 denotes an even exponent and 1 and odd. In this case we
have

k xk Q(xk) 2 3 5 7 11
1 137 168 1 1 0 1 0
3 139 720 0 0 1 0 0
5 141 1280 0 0 1 0 0
7 143 1848 1 1 0 1 1
13 149 3600 0 0 0 0 0
15 151 4200 1 1 0 1 0

Now we’re looking for linear combinations of the rows which add up to zero
(we’re doing all exponent arithmetic mod 2 now). Of course, the k = 3 and
k = 5 row add to all zeros. You can also see that the k = 13 row is already
a perfect square, for it is all zeros (and 3600 is a perfect square). Are there
other combinations of rows which add to all zeros mod 2?

There’s a better way to pose the problem of finding rows which sum to
zero. To do so we’re going to appeal to linear algebra. If you’ve studied any
linear or matrix algebra, what follows should look familiar. If you haven’t,
consider this a motivation to study some! From the more practical point of
view, if you haven’t done any linear algebra, you can simply accept the fact
that there are systematic ways to find all possible combinations of the rows
in the table above which sum to zero mod 2.

4

Let M denote the matrix corresponding to the exponent vectors in the
table above,

M =

1 1 0 1 0
0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 0 0 0
1 1 0 1 0

.

We’re looking for combinations of the rows which add to zero. In matrix
notation, we want to find a row vector b = [b1 b2 b3 b4 b5 b6] (mod 2, so all
bj are zeros and ones) such that

bM = 0

where 0 denotes the appropriate dimensional zero vector. If we take the
transpose of the above equation, what we want to find is a column vector b
so that

MT b = 0

where T is transpose. In linear algebra terms, we want to find vectors in
the nullspace of MT . This is a standard linear algebra computation, and we
won’t go into it here. I’ll simply mention that one can use something like
Gaussian elimination to find all vectors in (or a basis for) the nullspace.

For our matrix we can compute that the vectors

0
0
0
0
1
0

,

0
1
1
0
0
0

,

1
0
0
0
0
1

are a basis for the nullspace of MT , and so the corresponding products of the
appropriate Q(k) should be perfect squares. The first vector, for example,
says that row 5 of the table above, corresponding to 3600, provides a perfect
square all by itself. The second vector corresponds to the product of the Q’s
in the second and third rows, and the last vector corresponds to the product
of the first and last rows, Q(137)Q(151) = 705600 = 8402. From this last
combination we conclude that (137 · 151)2 ≡ 8402 (mod n) and so compute

(137 · 151 + 840, n) = 209

5

to find a proper factor of n.
Suppose we have m primes in our factor base. How many Q that split

over the base do we need to accumulate before we can form a perfect square?
In other words, how many rows do we need to accumulate in M (or columns
in MT) before MT is guaranteed to have a nonempty nullspace? It’s a basic
fact that this must happen once M has more rows than columns. In general,
if M has k more rows than columns then we can expect a minimum of k
vectors in the nullspace, and so we can form k different perfect squares.

There are a few other issues to consider. We compute x2
k − n for various

integers xk in the hopes that for some p in our factor base we have p|(x2
k−n).

This can be rephrased as
n ≡ x2

k (mod p)

so that n is a quadratic residue mod p. This need not be true. For example,
suppose that the last digit of n is a 3, and that p = 5. It is impossible to
find any integer x such that 3 ≡ x2 (mod 5), i.e., 3 is not a quadratic residue
mod 5. In this case it would be pointless to use 5 in the factor base for
n. More generally, the only primes worth including in the factor base are
those for which n is a quadratic residue. Recall also that we have a simple
test for quadratic residues: n is a quadratic residue mod p if and only if
n(p−1)/2 ≡ 1 (mod p). Thus we construct the factor base by choosing the
smallest primes possible subject to this restriction.

How large should the factor base be? The smaller it is, the fewer Q we
need to accumulate before we’re guaranteed that we can form perfect squares,
but with a smaller factor base it is far less likely that Q(xk) will split. On
the other hand, a larger base gives more splits, but requires that we find
more squares. A relatively straightforward analysis (that I won’t give here)
shows that a good choice “on average” is to choose the base to have about√

exp(
√

log(n) log(log(n))) primes.

Continued Fractions

Recall that if we have a real number x0 expressed as a continued fraction,

x0 = [a0, a1, s2, . . .]

then the successive convergents are rational numbers pk/qk, where

pk

qk

= [a0, a1, . . . ak].

6

The numbers ak can be computed by setting a0 = [x0] and then defining
xk+1 = 1/(xk − ak), ak+1 = [xk+1]. If x0 =

√
n for some number positive

integer n which is not perfect square then it turns out that the xk are given
by

xk =
Pk +

√
n

Qk

for integers Pk and Qk, where

Pk+1 = akQk − Pk, Qk+1 =
n− P 2

k+1

Qk

.

Most importantly, recall Proposition 2.8 on page 185 of Giblin: p2
k − nq2

k =
(−1)k+1Qk+1. Let’s define Q∗

k = (−1)kQk so that the proposition becomes
p2

k − nq2
k = Q∗

k+1.
Here’s how continued fractions work for factoring: Modulo n the last

equation becomes
p2

k ≡ Q∗
k+1 (mod n).

Now if we can find some subset of the pk such that Q∗
k1+1Q

∗
k2+1 · · ·Q∗

km+1 is
a perfect square, say y2, then we’ll have

(pk1pk2 · · · pkm)2 ≡ Q∗
k1+1Q

∗
k2+1 · · ·Q∗

km+1 (mod n)

or x2 ≡ y2 (mod n) where x = pk1pk2 · · · pkm and y =
√

Q∗
k1+1Q

∗
k2+1 · · ·Q∗

km+1.

We can then compute (x± y, n) and hope it’s greater than 1. In essence, the
numbers pk are playing the role of the xk in Kraitchik’s algorithm and the
Q∗

k+1 are playing the role of Q(xk).
So why would we want to replace a simple quadratic polynomial like Q(xk)

with apparently more complicated continued fraction expansions? Because
as was proved in class, Qk < 2

√
n for all k. Contrast this to Q(xk), which

rapidly exceeds
√

n and grows large very quickly. Because the Qk in the
continued fraction expansion stay (relatively) small, they are much more
likely to split over the factor base, and so more rapidly provide us with the
material we need to form perfect squares.

There are two additional details to consider before doing an example. It is
the case that half of the numbers Q∗

k will be negative. So, while 9 is a perfect
square, −9 is not, and we can’t just ignore the negative sign. So we don’t—
we just try to form perfect squares and account for the negative sign in the
obvious way—perfect squares have to be positive and so any corresponding

7

product of Q’s must have an even number of negative signs. As you’ll see
below, this amounts to including −1 as a prime in the factor base.

Also, just as with Kraitchik’s method, we need should not include in our
factor base any primes for which n is not a quadratic residue. If a prime p
divides Qk+1 then from p2

k − nq2
k = (−1)k+1Qk+1 we have p2

k ≡ nq2
k (mod p).

Now p cannot divide qk, for then we have p2
k ≡ 0 (mod p), implying p|pk, i.e.,

p would divide both pk and qk, contradicting the fact that (pk, qk) = 1 (this
is 1.3(b) on page 179, problem 6 on the test). Thus (qk, p) = 1 and there
exists r such that rqk ≡ 1 (mod p). Multiply both sides of p2

k ≡ nq2
k (mod p)

by r2 to obtain (rpk)
2 ≡ n (mod p), so n is a quadratic residue mod p. If n

is not a quadratic residue mod p then there is no hope of p dividing Qk+1.
Let’s factor 18601 again as an example. We’ll use a factor base consisting

of B = [2, 3, 5, 7, 11]. You can easily check that 18601 is indeed a quadratic
residue for each prime. Here’s a table that summarizes the computation:

k pk Q∗
k+1 −1 2 3 5 7 11

1 273 125 0 0 0 3 0 0
2 409 −128 1 7 0 0 0 0
3 682 99 0 0 2 0 0 1
4 1773 −40 1 3 0 1 0 0
6 5812 −72 1 3 2 0 0 0
7 10155 81 0 0 4 0 0 0
8 17676 −21 1 0 1 0 1 0

Note that k = 6 is missing from the table, since Q∗
7 did not split over the

factor base. Note also how small the Q∗
k are compared to the Q(xk) in

Kraitchik’s method. Amazingly, of the first 8 iterations all but one of the Q∗

split over our base. If we now consider the table mod 2, and write it out as
a matrix M we find that

M =

0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 0 1 0
1 0 1 0 0 1
1 0 0 0 0 1
0 0 0 0 0 0
0 1 0 1 0 1

.

8

Computing a basis for the nullspace of MT gives vectors

0
0
0
0
0
1
0

,

1
1
0
1
0
0
0

,

0
1
0
0
1
0
0

The first vector says that the sixth row (k = 7) is itself a perfect square,
which you can easily see, for Q∗

8 = 81. We then have x2 ≡ y2 (mod n) with
x = 10155 and y = 9. We find (10155 + 9, n) = 11, a proper factor of n. For
the second vector we obtain Q∗

2Q
∗
3Q

∗
5 = (125)(−128)(−40) = 640, 000 = 8002

as a perfect square. This also leads to a nontrivial factorization by computing
(p1p2p4 + 800, n) = 11. Finally, the last vector gives Q∗

3Q
∗
7 = 9216 = 962,

leading to (p2p6 + 96, n) = 19, another factor of n.
One problem that you might encounter in the continued fraction method

for factoring is when the continued fraction expansion of
√

n cycles very
rapidly. For example, if n = d2 + 1 for some d then

√
n = [d, 2d, 2d, 2d, · · ·].

In this case you’ll only get two distinct Q∗, probably not enough to form
any squares. The solution here is to use Q∗’s that come from the continued
fraction expansion of

√
λn, where λ is some suitable multiplier. Assuming

we generate the Q∗
k+1, pk, and qk from

√
λn, we then have

p2
k − λnq2

k = (−1)k+1Qk+1.

If we look at this mod n then we still have p2
k ≡ (−1)k+1Qk+1 = Q∗

k+1 and
can proceed exactly as before.

The Quadratic Sieve

The quadratic sieve does not use continued fractions to generate solutions
to x2 ≡ y2 (mod n), but rather returns to the polynomial Q(x) = x2 − n (or
variations of it). If you look back a Kraitchik’s method with the addition of
the factor base idea, you see that we compute Q(xk) for various xk and then
attempt to split Q(xk) over the factor base. The method for doing this is
simply to try dividing Q(xk) by the first prime in the base, then the second,
then the third, etc. When we reach the last prime in the base, if Q(xk) has

9

been reduced to 1 then we conclude that it factors over the base. For large
values of n, however, very few of the Q(xk) actually split and so we waste a
great deal of time trial dividing Q(xk) by primes only to discard all of our
work when we reach the last prime in the base and find that Q(xk) didn’t
split.

It would be nice to find a means for more efficiently identifying those
Q(xk) which will split over our base. There is such method, and it’s really
a variation on the sieve of Eratosthenes. Here’s how the traditional sieve
of Eratosthenes works. Suppose we want to generate a list of all primes up
to 1000. One way is trial division. Take each integer k in turn and try
dividing by all integers less than

√
k (or all primes). This is analogous to

what Kraitchik’s algorithm with the factor base was doing, and it’s a lot of
work. The sieve of Eratosthenes is far more efficient and works as follows.
Create a list or an array contained the integers from 1 up to 1000. Circle
or mark 2 to indicate that it’s prime. Then step through the array with a
stepsize of 2, starting at 4, and strike those elements—they’re all multiples
of 2, and so not prime. Return to the start and find the next element which
has not been eliminated, in this case 3. Circle 3 and then strike every third
element from 6 onward—they’re all multiples of 3. In general, after having
struck all multiples of pk−1 we return to pk−1 and find the next element in
the array—this is pk. We circle pk and then strike every pkth element that
follows. Notice that we don’t do any trial division of the elements as we
strike them. If an element appears in the 52nd position then it’s a multiple
of 13 automatically; we don’t trial divide it by 13. Notice also that when
we’re done striking multiples of p = 31, our array contains only primes, for
every composite less than 1000 has a prime factor less than

√
1000, i.e., a

prime factor of 31 or less, and so has been struck.
Suppose instead of finding primes less than 1000 we want to find all

integers less than 1000 which split over the factor base B = [2, 3, 5], that is,
integers with only 2’s, 3’s, and 5’s in their prime power factorization. Again,
construct and array containing integers from 1 to 1000. We know that only
elements with an even index are divisible by 2. Step through the array and
consider each such element in turn. For each, remove from it (divide) the
highest possible power of 2. Repeat this procedure for 3, dividing every 3rd
element by the highest possible power of 3. Repeat for 5. At then end of
this procedure any number with only 2, 3 and 5 in its factorization has been
reduced to 1; all other elements are greater than 1. The simple idea is that
elements which are divisible by p appear at regular intervals in the array, so

10

that we need not bother trial dividing any other elements to see if they are
divisible by p. We “sieve” the array by p. This proves to save an enormous
amount of work.

This is the idea behind the quadratic sieve. It turns out that those values
of Q(xk) = x2

k − n which are divisible by a prime p in the factor base appear
at regular intervals with respect to the index k. We can thus save a lot of
work by forming an array of the Q(xk) and “sieving” by the primes in the
factor base.

Consider an example, with n = 57469. Suppose that p = 11 is a prime
in the factor base. Of course, n is a quadratic residue mod p. In fact,
n (mod 11) = 5 and the equation x2 ≡ 5 (mod 11) has two solutions, x ≡
4 (mod 11) and x ≡ 7 (mod 11). Also, in this case m0 = [

√
n] = 239, so

xk = 239 + k. Now if we’re looking for values of x such that p|Q(x), that
is, x2 ≡ n (mod p), we need only consider x such that x ≡ 4 (mod 11) and
x ≡ 7 (mod 11). For xk = 239 + k this means we need only consider those
values of k such that 239+ k ≡ 4 (mod 11) and 239 + k ≡ 7 (mod 11), which
boil down to k ≡ 7 (mod 11) and k ≡ 10 (mod 11). If we form an array,
indexed from 1, of the form

[Q(x1) Q(x2) Q(x3) Q(x4) · · ·]

then we can divide each element Q(xk) with k ≡ 7, 10 (mod 11) by the
highest possible power of 11. Do the same for the other primes in the factor
base. When you’re done, those elements which equal 1 are precisely those
which split over the factor base.

The procedure above requires us to solve the equation x2 ≡ n (mod p) for
each prime in the factor base. How do we do this? If p is of the form p = 4k+3
then we’ve already done it. In the “coin flipping by telephone” material we
showed that in this case x = ±nk+1 (mod p) solves x2 ≡ n (mod p). If p is of
the form p = 4k + 1 then things are slightly more difficult. We’ll talk about
how to solve x2 ≡ n (mod p) in this case in chapter 11.

11

