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Let D be a domain in two or more dimensions and u(x, t) the “tempera-
ture” of D, where x = (x1, x2, . . . , xn) is a point in n dimensional space. The
usual physical model for the behavior of u requires that u satisfy

∂u

∂t
−4u = 0

in D. An appropriate boundary condition would be u = h on ∂D (that
is, the temperature on the boundary is specified) and an appropriate initial
condition is u(x, 0) = f(x) for x ∈ D.

Here’s a derivation of the heat equation. Think of the temperature u
as the “thermal energy density” of D, so higher temperature corresponds
to higher energy density. More precisely, suppose that a region B in n di-
mensional space has a constant temperature u; we’ll assume that the total
amount of thermal energy in B is given by E = (c0 + c1u)|B|, where |B|
denotes the n-dimensional volume (e.g., area in 2D) of B and c0 and c1 are
some constants which depend on the material of which B is made and the
system of units we use for volumes and temperatures.

Now let B be ANY region contained in D. If u isn’t constant on B then
we can chop B up into little pieces, on each of which u is effectively constant,
compute the energy contained in each, and add. This leads to

E =
∫

B
(c0 + c1u(x, t)) dV (1)

where the integral is over B in the n spatial variables and dV denotes
dx1 dx2 · · · dxn. Since u changes over time, so does E. We can differen-
tiate both sides of equation (1) to find

dE

dt
=

∫

B
c1

∂u

∂t
(x, t) dV (2)

where the “offset” constant c0 drops out.
Now let’s compute dE

dt
in a different way. We know that heat flows from

hot to cold, or high to low density. The gradient vector ∇u(x) points in the
direction of maximum temperature increase at any point x, so it’s reasonable
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to model heat as flowing in the direction of −∇u(x) at any point (the heat
energy flows “downhill” in the steepest direction, sort of like a fluid). In fact,
we’ll assume that the flow of heat energy is given by the vector field

F = −α∇u (3)

for some constant α > 0, where the gradient ∇ is only in the spatial (x)
variables (so for any fixed time t, F is just a vector field in x1, . . . , xn that
just happens to change with time t). The rate at which thermal energy is
leaving any region B at any given time is given by

∫
∂B F · n dS, where n is

an outward pointing unit normal vector on ∂B and dS refers to the “surface
measure” on ∂B—just the arc length ds in 2D, or surface area in 3D. The
rate Q at which heat energy is ENTERING B is thus

Q = −
∫

∂B
F · n dS (4)

with n and dS as above. Now apply the divergence theorem to the right side
of equation (4) to obtain

Q = −
∫

B
∇ · F dV (5)

with dV as above.
If the thermal energy is conserved then we should have dE

dt
= Q (the

rate that the energy in B is increasing is the rate the energy flows into B).
Equations (2) and (5) yield

∫

B

(
c1

∂u

∂t
+∇ · F

)
dV = 0 (6)

for EVERY subdomain B of D. You should be able to convince yourself
that if some (continuous) function φ defined on a region D integrates to zero
over every subdomain B then φ must be identically zero (we’ve done this
argument before). This means that we must have

c1
∂u

∂t
+∇ · F = 0

everywhere in D. If we use F = −α∇u we obtain the heat equation

∂u

∂t
− κ4 u = 0 (7)

2



where κ = α/c1 is called the diffusivity and 4u = ∇ · ∇u = ∂2u
∂x2

1
+ · · · ∂2u

∂x2
n

is

the Laplacian of u. We’ll usually take κ = 1 for simplicity.

Boundary and Initial Conditions

As mentioned above, we can specify the temperature u on the boundary
of D (this is the Dirichlet boundary condition) and an initial temperature.
All in all we obtain

∂u

∂t
−4u = 0, x ∈ D, t > 0 (8)

u(x, t) = h(x, t), x ∈ ∂D, t > 0 (9)

u(x, 0) = f(x), x ∈ D, (10)

It turns out that the heat equation (8) with Dirichlet boundary condition (9)
and initial condition (10) has a unique solution, at least if h and f , and the
domain D, are nice enough.

An common alternative to the Dirichlet boundary condition is the Neu-
mann boundary condition, in which we specify the rate at which heat energy
is entering the domain D at the boundary. The vector field F dictates the
direction of heat energy flow, and F · n at any point x ∈ ∂D and time t > 0
gives the rate at which heat energy is leaving D near x; more precisely, F ·n
is the rate (energy per time) that heat energy is leaving D per unit length of
∂D (in 2 dimensions) in the vicinity of x. Thus −F · n is the rate at which
energy is entering, and this is what we can specify as a boundary condition.
We thus require that −F · n = g(x, t) for some given function g, which leads
to (with F = −α∇u)

α
∂u

∂n
= g (11)

on ∂D, where ∂u
∂n

= ∇u·n. Remember, α is known, and we’ll usually take it to
be 1 anyway. The case g ≡ 0 is called the insulating boundary condition—no
heat can enter or leave D.

We can thus replace the Dirichlet condition (9) with the Neumann con-
dition (11). Again, the resulting equations will have a unique solution.

Steady-State Solutions

If in the Dirichlet data case the function h(x, t) is independent of time
then the solution to the heat equation will stabilize, in the long run, and
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approach a solution u(x) which no longer depends on time. In this case all
time derivatives become zero in equation (8) and we obtain

4u = 0, x ∈ D, (12)

u(x) = h(x), x ∈ ∂D (13)

which is called Laplace’s Equation. The same holds true in the Neumann
data case, provided

∫
∂D g(x) ds = 0.
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