The Heat Equation in Two (or More)

Dimensions
MA 436
Let D be a domain in two or more dimensions and u(z,t) the “tempera-

ture” of D, where x = (z1, 9, ...,x,) is a point in n dimensional space. The
usual physical model for the behavior of u requires that u satisfy
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in D. An appropriate boundary condition would be u = h on 0D (that
is, the temperature on the boundary is specified) and an appropriate initial
condition is u(z,0) = f(z) for z € D.

Here’s a derivation of the heat equation. Think of the temperature u
as the “thermal energy density” of D, so higher temperature corresponds
to higher energy density. More precisely, suppose that a region B in n di-
mensional space has a constant temperature u; we’ll assume that the total
amount of thermal energy in B is given by E = (¢y + ciu)|B|, where |B|
denotes the n-dimensional volume (e.g., area in 2D) of B and ¢y and ¢; are
some constants which depend on the material of which B is made and the
system of units we use for volumes and temperatures.

Now let B be ANY region contained in D. If u isn’t constant on B then
we can chop B up into little pieces, on each of which w is effectively constant,
compute the energy contained in each, and add. This leads to

E = / (co + cru(z,t)) dV (1)
B
where the integral is over B in the n spatial variables and dV denotes
dxidxy - -+ dr,. Since u changes over time, so does E. We can differen-
tiate both sides of equation (1) to find
dF ou
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where the “offset” constant ¢y drops out.
Now let’s compute %3 in a different way. We know that heat flows from
hot to cold, or high to low density. The gradient vector Vu(z) points in the

direction of maximum temperature increase at any point x, so it’s reasonable



to model heat as flowing in the direction of —Vu(z) at any point (the heat
energy flows “downhill” in the steepest direction, sort of like a fluid). In fact,
we’ll assume that the flow of heat energy is given by the vector field

F =—-aVu (3)

for some constant o > 0, where the gradient V is only in the spatial (z)
variables (so for any fixed time ¢, F is just a vector field in z1,...,z, that
just happens to change with time t). The rate at which thermal energy is
leaving any region B at any given time is given by [y5F - ndS, where n is
an outward pointing unit normal vector on 0B and dS refers to the “surface
measure” on dB—just the arc length ds in 2D, or surface area in 3D. The
rate () at which heat energy is ENTERING B is thus

Q=- F-ndS (4)
OB
with n and dS as above. Now apply the divergence theorem to the right side
of equation (4) to obtain

Q:—/BV-FdV (5)

with dV as above.
If the thermal energy is conserved then we should have % = @ (the
rate that the energy in B is increasing is the rate the energy flows into B).

Equations (2) and (5) yield
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for EVERY subdomain B of D. You should be able to convince yourself
that if some (continuous) function ¢ defined on a region D integrates to zero
over every subdomain B then ¢ must be identically zero (we’ve done this
argument before). This means that we must have

du
—+V-F=0
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everywhere in D. If we use F = —aVu we obtain the heat equation
0
a—? —kAu=0 (7)



where k = «//cy is called the diffusivity and Au =V - Vu = g%% + - gig is

the Laplacian of u. We'll usually take x = 1 for simplicity.
Boundary and Initial Conditions

As mentioned above, we can specify the temperature v on the boundary
of D (this is the Dirichlet boundary condition) and an initial temperature.
All in all we obtain

E_Au =0, z€D, t>0 (8)

u(z,t) = h(x,t), x€dD, t>0 9)
uw(z,0) = f(z), z€D, (1

0)
It turns out that the heat equation (8) with Dirichlet boundary condition (9)
and initial condition (10) has a unique solution, at least if h and f, and the
domain D, are nice enough.

An common alternative to the Dirichlet boundary condition is the Neu-
mann boundary condition, in which we specify the rate at which heat energy
is entering the domain D at the boundary. The vector field F dictates the
direction of heat energy flow, and F - n at any point x € 9D and time t > 0
gives the rate at which heat energy is leaving D near x; more precisely, F - n
is the rate (energy per time) that heat energy is leaving D per unit length of
0D (in 2 dimensions) in the vicinity of z. Thus —F - n is the rate at which
energy is entering, and this is what we can specify as a boundary condition.
We thus require that —F - n = g(x,t) for some given function g, which leads
to (with F = —aVu)
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on 0D, where g—z = Vu-n. Remember, « is known, and we’ll usually take it to

be 1 anyway. The case g = 0 is called the insulating boundary condition—no
heat can enter or leave D.

We can thus replace the Dirichlet condition (9) with the Neumann con-
dition (11). Again, the resulting equations will have a unique solution.

Steady-State Solutions

If in the Dirichlet data case the function h(z,t) is independent of time
then the solution to the heat equation will stabilize, in the long run, and
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approach a solution u(x) which no longer depends on time. In this case all
time derivatives become zero in equation (8) and we obtain

Au = 0, xze€D, (12)
w(z) = h(x), ze€dD (13)

which is called Laplace’s Equation. The same holds true in the Neumann
data case, provided [y, g(x)ds = 0.



