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Introduction 

This paper presents two alternative approaches to detecting images taken from videos of Leno 

talk-shows: a Support Vector Machine (SVM) and an Eigen-classifier based on principal 

components analysis. On a testing set of 2952 images collected from 88 videos, the SVM 

approach produced an experimentally calculated 90.41% accuracy using color features. On the 

same set, the Eigen-classifier produced 97.37% accuracy employing thresholds derived from 

Eigen images. The paper describes strengths and weaknesses of both methods, as well as their 

potential use on the difficult problem of video copyright violation detection.  

As internet based video websites, such as YouTube and Metacafe, continue to increase in 

popularity, the need for systems to detect and remove copyrighted material increases. Copyright 

owners often create their own websites to display advertisements along with their videos to earn 

money. Allowing the same material to remain on social video websites can reduce traffic to, and 

thus revenue earned from, the owner’s website.  

This paper focuses on one small example of copyrighted material: Jay Leno of the Tonight Show 

performing interviews. Due to the relative consistency, both in background and layout, of the 

images captured from Tonight Show videos, frames of these videos can be identified by both 

color analysis and principal components analysis. Using the ideas presented in this paper, it may 

be possible to develop a system that could detect almost any relatively static video clips, such as 

other talk shows, news programs, or other various shows with a consistent background. 

Method 

Our first method used spatial color moment features and a Support Vector Machine (SVM). We 

first split each image using an n x n grid into n
2
 blocks of pixels; we used n=7, but the classifier 

is robust to changes in n. For each block, we calculate the first two moments (mean and 

variance) of each of the three color bands. This yields a feature vector with 7 x 7 x 3 x 2 = 294 

dimensions. Intuitively, the means correspond to a low-resolution version of the image, and the 

variance to a coarse measure of texture. These features are normalized to the range [0,1] over the 

entire data set. These image features are then classified by a SVM. During training, SVMs use 

kernel functions to map each image’s features to a higher-dimensional space to find a hyper 



plane which will separate the images into classes. SVMs are designed for two-class problems, 

and output a real number for each image. If the output is thresholded at 0, the sign is the 

classification and the magnitude can be used as a loose measure of the confidence.  

 

Our second method used Principal Components Analysis (PCA). PCA attempts to capture the 

directions of greatest variance in the data set. Projecting images onto the subspace spanned by 

these dimensions yields a lower-dimension representation of the data.  

We represent each image in a training set of S images by Xi = [xi.1, xi,2, …xi,n], 1  i  S, where n 

is the number of pixels in the image, which is typically very high. The training set is a matrix X 

= [X1, X2, …XT]
T
. The mean image m = [ 1, 2, … n] is computed, where j = i xi,j. A matrix 

M is created, which has S copies of m as row vectors: [m; …; m]. Then the covariance matrix, C, 

of the data set is calculated as  

   C = (X-M)
T
(X-M).            (1) 

The eigenvectors of C form a basis for X, but those corresponding to the largest eigenvalues give 

the directions of greatest variability. This fact can be exploited to reduce the dimensionality of a 

data set, by keeping only those d (d << n) eigenvectors of highest variability, and projecting the 

data into the d-dimensional subspace (an “eigenspace”) spanned by those eigenvectors. The 

eigenvectors are of dimension n, and can be represented as images: Figure 1 shows the three 

eigenvectors corresponding to the three largest eigenvalues of our training set. 

Figure 1: First Three Principal Components from Leno Image Set 

   

 

Because the eigenvectors form a basis, any image in the training set can be reconstructed as a 

linear combination of the mean image and the n eigenvectors. A linear combination of the mean 

and the top d eigenvectors gives a projected-image, an approximation of any image in the 

training set. Any image in the training set will be close to its projected image, but those not the 

training set will tend to lie further from their projected images, since they will vary in different 

ways than those in the training set.  

The distance from an image to its projected image indicates how closely related the image is to 

the training set. We exploit this property to build a classifier to distinguish between two different 

types of images by simply thresholding the distance between a test image and its projected 

image; we dub this classifier an “eigen-classifier”. 

Related work 

Support vector machines using spatial color moments have been used for sunset detection
2
, and 

later extended to various types of outdoor scenes
1
. They are robust to small changes in 



background, which is desirable for talk shows, since the camera angle often changes slightly. 

Classifiers based on creating images of the principle components of a distribution have long been 

used for face recognition; both to distinguish between known faces and between faces and non-

faces
4
. This method was effective at classification, even when few faces were used in training; 

however, the data sets contained only mug shots, and thus were highly constrained. Our work 

differs in that there are several types of images (e.g., monolog, band shots, and interviews); 

however, within each type, camera angle and background are relatively static, so individual 

classifiers can be created for each type. More recently, PCA has been applied to sets of outdoor 

images taken from webcams over several months
3
. While the content is relatively static, the 

analysis reveals variations due to the time of day, season, and weather. Our application is applied 

to video, where the content is moving, but the length of time between images is much shorter. 

Experimental setup 

Because the focus on this project is detection of copyrighted material, we collected videos from 

two social video websites: YouTube (85 videos) and Metacafe (3 videos), of the types and 

numbers shown in Table 1. All the talk show videos, regardless of the host, were collected by 

performing keyword searches; additionally, Leno videos were required to be of an interview with 

a guest.  The non-talk show videos were collected by downloading the most recent videos from 

each genre catalogued by YouTube to ensure the data sample was diverse.  

Individual frames were extracted from the videos at a rate of one frame per three seconds. This 

provided enough training data, while having much lower correlation between successive frames 

than would be the case had we sampled at higher frame rates. The frames were inspected to 

verify the process was successful: any frame from a Leno video that did not actually show the 

host behind his desk, the guest sitting, or the host and the guest sitting were removed the list of 

Leno frames. Frames that showed a transition, videos of movies, and other broadcasts were also 

removed. Table 1 shows the number of frames of each type in the training and testing sets. Since 

the purpose of our classifier was to detect Leno interviews, we marked those as positive 

examples, and all others, including other talk shows, as negative examples. 

Table 1: Data Set 

 Video Count Training Testing Total: 

Leno Interview (positive) 18 1099 645 1744 

Other Talk Shows (negative) 77 448 904 1352 

Other Videos (negative) 33 694 1385 2079 

Total: 88 2241 2934 5175 

 

We extracted spatial color moments from each of the frames in the data set. We then trained an 

SVM as discussed above, using a radial basis function kernel with a width of 12.33. The 

resulting SVM had 118 support vectors (5.3% of the frames in the training set), 47 of which 

corresponded to Leno interviews.  

We used two separate eigen-classifiers in our work. One was trained on frames that depict a 

straight shot of the guest only on a Leno show, and one was trained on frames containing both 

the guest and Leno. We used d = 100 for each. We chose the thresholds for each by using 



validation sets; we calculated the distance between each frame in the validation set to its 

projected-frame and chose a threshold that maximized the true positive rate and minimized the 

false positive rate on the validation set. This yielded thresholds of 80,000 and 90,000 for the two 

eigen-classifiers, respectively. We combined the results of the two classifiers simply by calling a 

test frame a Leno interview if either of the eigen-classifiers classified it as such. 

Results and discussion 

We classified each of the 2934 frames in the test set as Leno interview or non-Leno-interview as 

discussed above. We set the threshold on the SVM output to be 0, as discussed earlier. Table 2 

compares results from both the SVM and eigen-classifiers, using four measures: accuracy 

(percentage correct), true positive rate (percentage of Leno interviews detected), false positive 

rate (percentage of non-Leno interviews incorrectly detected), and precision (percentage of those 

frames detected as Leno interviews that actually are Leno interviews).  

Table 2: Results for the SVM and Eigen-classifiers  

Statistic SVM Eigen-classifier 

Accuracy: 90.41% 97.37% 

True Positive Rate: 90.85% 99.28% 

False Positive Rate: 9.71% 3.21% 

Precision: 72.35% 90.33% 

 

We see that both methods were successful, obtaining accuracies of over 90%, likely because our 

assumptions of a static background held true with very few exceptions, like when the show 

would change backgrounds (such as Christmas episodes and seasonal differences).  Slight 

variations due to the operator bobbling the camera slightly did not affect the classifiers. The 

results are also inflated due to some cases in which the same guest appeared in the training and 

the test set. (While identical frames were not used in both sets, some guests did appear in both 

sets.) 

However, there are two limitations of the current system. One is the lack of frames containing a 

Jay Leno alone; ironically, this causes the current system to fail to detect Leno himself! (Our test 

sets do not include these types of frames.) The other is the inability to handle significant changes 

of background or new camera angles not encountered in training. Advertisements of future 

shows, weather alerts, and other insertions by video editors also contribute to misclassification.  

We can obtain a more comprehensive understanding of the performance of each classifier by 

looking at its ROC curve (Figure 2). This curve is obtained by repeatedly shifting the thresholds 

in either direction, to increase (or decrease) true positive rate while increasing (or decreasing) the 

false positive rate.  



Figure 2: ROC Curves of Both Approaches 
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While both classifiers were successful, we see that the eigen-classifier had a higher true positive 

rate than the SVM classifier for any given false positive rate, and so appears to be better suited 

for identifying Leno images than the SVM classifier.  

Finally, we observed that the eigen-classifier was much more efficient, classifying frames more 

quickly than the SVM. 

Conclusion and future work 

We have demonstrated that both the SVM approach and the eigen-classifier approach are 

successful at classifying individual frames of videos as Leno or non-Leno, with accuracies of 

90.4% and 97.4%, respectively.  

This work could be extended in many ways. First would be to implement the eigen-classifiers in 

a real world application.  Because of its relatively high accuracy and true positive rate, it could 

be included into a web crawler that searches video websites for copies of specific shows. Of 

course, false positives must be minimized in such a system, as they would be very inconvenient. 

A simple way to do this is to classify each frame in a video, and only classify the video as a Leno 

show if a relatively-high percentage of frames were detected as Leno interviews. (If a lower, but 

still significant percentage of frames were detected, then it could be presented to the operator of 

the system as a potential infringement of copyright, and then manually checked. This is still 

much less tedious than checking every video manually.) This could be made more robust by 

computing the average distance of all the frames from the thresholds as well. Using a collection 

of these crawlers, a company could easily alert video websites to the copyright violations and 

have the videos promptly removed. The company could also detect potential copyright violations 

at upload time.  

Second, we hypothesize that similar systems, trained appropriately, could detect videos of other 

copyrighted, static television programs, but would like to demonstrate it experimentally. We 

would need to increase the types of videos used to train the system to see how it scales.  
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