"Solution to in-class exercise Lesson 7" "Constants and given information" g = 9.81 "m/s^2" L_A = 20 "m" L_B = 35 "m" z_1 = 30 "m" epsilon = 0 "PVC is smooth" rho = density(water,T=15,P=101.325) mu = viscosity(water,T=15,P=101.325) "Schedule 40 pipe dimensions" D_A = 0.1023 "m" D_B = 0.0409 "m" "M.E.E. from (1) to (2)" g*z_1 = V_B^2/2 + e_loss "Loss terms" e_loss = f_A*(L_A/D_A)*V_A^2/2 + f_B*(L_B/D_B)*V_B^2/2 + K_inlet*V_A^2/2 + K_cont*V_B^2/2 Re_A = rho*V_A*D_A/mu f_A = ((-2*log10((epsilon/(D_A*3.7065))-5.0452/Re_A*log10(((epsilon/D_A)^1.1098)/2.8257+5.8506/Re_A^0.8981))))^(-2) Re_B = rho*V_B*D_B/mu f_B =((-2*log10((epsilon/(D_B*3.7065))-5.0452/Re_B*log10(((epsilon/D_B)^1.1098)/2.8257+5.8506/Re_B^0.8981))))^(-2) K_inlet = 0.5 K_cont = 0.5-0.167*(D_B/D_A)-0.125*(D_B/D_A)^2-0.208*(D_B/D_A)^3 "Cons of mass" V_A*pi*D_A^2/4 = V_B*pi*D_B^2/4 "Flow rate" Vol_dot = V_B*pi*D_B^2/4