\qquad

ROSE-HULMAn Institute of Technology
 Department of Mechanical Engineering

ALE - Calculating convective heat transfer coefficients

1. Water flows through a section of $2.54-\mathrm{cm}$ inner diameter tube 3.0 m long. The water enters the section at $60^{\circ} \mathrm{C}$ with a velocity of $2 \mathrm{~cm} / \mathrm{s}$ and leaves at $80^{\circ} \mathrm{C}$. Assuming that the flow is fully developed by the time it enters the region of interest and that the wall is subject to constant wall heat flux
a. Find the convective heat transfer coefficient h.
b. find the heat flux on the inner surface in $\mathrm{W} / \mathrm{m}^{2}$.
c. Find the inner wall temperatures at the inlet and the exit.

Hints:

- For internal flow an energy balance on the fluid is another tool for finding \dot{Q} (and thus q ").
- How does the surface to fluid to temperature difference vary for fully developed flow with q " = constant? Is there any difference between local and average h, then?
- Are you going to use $T_{\text {film }}$ for properties here, or some other T ?

Answers:

a. $114\left(\mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$
b. $3468 \mathrm{~W} / \mathrm{m}^{2}$
c. $T_{s, \text { in }}=90.4^{\circ} \mathrm{C}, T_{s, \text { out }}=110.4^{\circ} \mathrm{C}$
2. Repeat Problem 1 with a fluid velocity of $2 \mathrm{~m} / \mathrm{s}$ instead of $2 \mathrm{~cm} / \mathrm{s}$.

Answers:

a. $10,300\left(\mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$
b. $346,715 \mathrm{~W} / \mathrm{m}^{2}$
c. $T_{\mathrm{s}, \text { in }}=93.7^{\circ} \mathrm{C}, T_{\mathrm{s}, \text { out }}=113.7^{\circ} \mathrm{C}$
3. The core of a high powered electro-magnet is to be cooled using glycerin ($c=2447 \mathrm{~J} / \mathrm{kg}-\mathrm{C}^{0}, \rho=1258 \mathrm{~kg} / \mathrm{m}^{3}, k=$ $0.2860 \mathrm{~W} / \mathrm{m}-\mathrm{C}^{0}, \mu=0.6582 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$) flowing through a 20 mm inner diameter coil wrapped around it. The core produces 1000 W , and keeps the surface temperature of the tubing essentially constant at $47^{\circ} \mathrm{C}$. The glycerin enters the coil at $25^{\circ} \mathrm{C}$ and leaves at $35^{\circ} \mathrm{C}$.
a. Find the required flowrate of glycerin to achieve this cooling.
b. Find the convective heat transfer coefficient (h) from the tube wall to the glycerin and the required length of tubing.
\qquad
\qquad

Hints:

- Again, remember that for internal flow an energy balance on the fluid is another tool useful tool.
- Careful before you assume fully developed flow!
- For part b: If you are looking for the required length of tubing, do you want $h_{\text {local }}$ or $h_{\text {average }}$?

Answers:

a. $0.0409 \mathrm{~kg} / \mathrm{s}$
b. $2532 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{0}$
c. 12.87 m
4. An annular flow passage 5 m long is formed by placing a 2 "-nominal schedule 40 cast iron pipe (OD $=6.034 \mathrm{~cm}$) inside a 4 "-nominal schedule 40 cast iron pipe (ID $=10.23 \mathrm{~cm}$). If the flow passage conveys 8 liters/s of methanol (ρ $=788.4 \mathrm{~kg} / \mathrm{m}^{3}, \mu=0.586 \times 10^{-3} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, c=2115 \mathrm{~J} / \mathrm{kg}-\mathrm{C}^{0}, k=0.286 \mathrm{~W} / \mathrm{m}-\mathrm{C}^{0}$), find the average heat transfer coefficient over the 5 m length.

Hints: Not a circular flow passage. What do you use instead of D ?

Answers:

$2532 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{0}$. If use equivalent diameter with only inner surface heated, $2114 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{0}$
a) FIND PROPERTIES AT

$$
\begin{aligned}
& T_{\text {BUXX }}=\frac{T_{\text {IN }}+T_{E X I T}}{2}=70^{\circ} \mathrm{C} \\
& \rho=9775 \mathrm{Rg} / \mathrm{s} \\
& \mu=0.404 \times 10^{-3} \mathrm{Rg} / \mathrm{m}-\mathrm{s} \\
& k=0.643 \mathrm{w} / \mathrm{m}-\mathrm{c}^{0} \\
& C=4190 \mathrm{~J} / \mathrm{pg}-\mathrm{CO}^{\circ} \\
& p_{r}=2.55 \\
& R_{e}=\frac{\rho V D}{\mu}=\frac{977.5 \frac{\mathrm{Dg}}{\mathrm{~m}^{3}} \times .02 \frac{\mathrm{DA}}{\mathrm{~s}} \times 0.0254 \mathrm{~m}}{0.404 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{ph}-\mathrm{s}}}=\underbrace{1229}
\end{aligned}
$$

\therefore FLOW IS LAMINAR CONST $q^{\prime \prime}$ I FULLY-DEVELOPED MEANS COREECT NUSSET COR最ELATIUN IS

$$
\begin{aligned}
& \mathbb{N u}=\frac{h D}{k}=4.36 \\
& h=\frac{k N u}{D}=\frac{0.663 \frac{\mathrm{~W}}{\mathrm{~m}-\mathrm{co}^{2}} \cdot 4.36}{0.0254 \mathrm{~m}}=\frac{114 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{c}^{2}}{}
\end{aligned}
$$

b) $q^{\prime \prime}=\dot{Q} / A$

ENERGY BALANCE ON FLUID

$$
\begin{aligned}
& \dot{Q}= \dot{m} C\left(T_{E X T}-T \mathrm{~N}\right) \\
& \dot{m}=\rho A V=\left(977.5 \frac{\mathrm{Rg}}{\mathrm{~m}^{3}}\right) \frac{\pi(0.0254)^{2}}{4} \mathrm{~m}^{2} \cdot(0.02) \frac{\mathrm{m}}{\mathrm{~s}}=9.906 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \dot{Q}=\left(9.906 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(4190 \frac{\mathrm{~J}}{\mathrm{Rg}-\mathrm{co}}\right)(80-60) \mathrm{c}^{0} \\
&= 830 \mathrm{~W} \\
& q^{\prime \prime}=(830 \mathrm{vy})(\pi \cdot 0.0254 .3) \mathrm{m}^{2}=3468 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

e) FOR F-D FLOW $W / q^{n}=$ const, $T_{\text {ENAL }}-T_{\text {FLUD }}=$ const.
a) $\mathbb{R e}_{e}=\frac{Q V D}{\mu}=\frac{\left(997 \mathrm{Rg} / \mathrm{m}^{3}\right)(2 \mathrm{~m} / \mathrm{s})(0.025) \mathrm{m}}{0.404 \times 10^{-3} \mathrm{~kg} / \mathrm{m}-5}=122,900$

FLOW is TURBULENT, FAD wI $q^{\prime \prime}=$ canst.
FOR TURBULENT FLOW, THE BOUNDARY CONDITION POESNT MATTER MUCH.

DIVE (CERTAINLY NOT THE ONLY) CORREL ATON IS THE Dittus- Bolter eqn:

$$
\begin{aligned}
\mathbb{N u} & =(0.023) \mathbb{R e}^{0.8} \mathbb{P r}^{n} \\
& =(0.023)(122,900)^{0.8}(2.55)^{0.4} \\
& =394 \\
& =0.4 \text { FOR COOLING }
\end{aligned}
$$

b)

$$
\begin{aligned}
& \dot{Q}=\dot{m} c\left(T_{\text {ExT }}-T_{1 \mathrm{w}}\right) \\
& \dot{m}=\rho A V=\left(997 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \frac{\pi(0.0254)^{2}}{4} \mathrm{~m}^{2} \cdot 2 \frac{\mathrm{~m}}{\mathrm{~s}}=0.9906 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \dot{Q}=\left(0.9906 \frac{\mathrm{~kg}}{\mathrm{~S}}\right)\left(4190 \frac{\mathrm{~J}}{\mathrm{Dg} \cdot \mathrm{C}}\right)(80-60)^{\circ} \mathrm{C}=83,000 \mathrm{~W} \\
& \dot{q}^{\prime \prime}=\tilde{Q} / \Delta=\dot{\dot{Q}} /(\pi D)=\cdots=346,700 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

c) $T_{\text {WAL, IN }}=q^{\prime \prime} / n+T_{\text {IN }}=\ldots=93.7^{\circ} \mathrm{C}$

$$
T_{\text {WALL, OUT }}=q^{\prime \prime} / h+T_{\text {oUt }}=\ldots 13.7^{\circ} \mathrm{C}
$$

a)

$$
\begin{aligned}
\dot{Q} & =\dot{m} c\left(T_{m .00 t}-T_{m, n}\right) \\
\dot{m} & =\frac{\dot{O}}{c\left(T_{m, a r}-T_{m, i n}\right)}=\frac{1000 \mathrm{~W}}{2447 \frac{\mathrm{~J}}{12 g-c 0}(35-25) \mathrm{C}^{\circ}}= \\
& =0.0409 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

b) $\mathbb{R e}_{e}=\frac{\rho V D}{\mu}$

$$
\begin{aligned}
& \dot{M}=\rho A V \\
& V=\frac{\dot{m}}{\rho A}=\frac{\dot{m} \cdot 4}{\rho \pi D^{2}}
\end{aligned}
$$

A HANDY REL'N TO REMEMBER FIR CIRCULAR passages

$$
\begin{aligned}
\cdot \operatorname{Re} & =\frac{\rho\left(\frac{4 \dot{m}}{\rho^{\pi D}}\right) \nabla}{\mu}=\frac{4 \dot{\mathrm{~m}}}{\pi \mu D} \\
& =\frac{(4)\left(0.0469 \frac{\mathrm{~kg})}{\mathrm{s}}\right)}{(\pi)\left(0.6582 \frac{\mathrm{~kg}}{\mathrm{~m}-\mathrm{s}}\right)(0.020 \mathrm{~m})}=3.96
\end{aligned}
$$

laminar fur sure

CHECK FUR FD FLOW

$$
\begin{aligned}
& \frac{L_{+}}{D} 0.05 \mathbb{R e} \mathbb{R}_{r} \\
& \text { WHAT IS Pr? } \\
& \mathbb{P}_{r}=\frac{\nu}{\alpha}=\frac{\mu / \rho}{k / \rho c}=\frac{\mu c}{k} \\
& \mathbb{P}_{r}=\frac{(0,6582)(2447)}{(0.2860)} \frac{\frac{\mathrm{kg}}{\mathrm{xs} .8} \cdot \frac{8}{\mathrm{x}} \mathrm{x} t}{\frac{\mathrm{x}}{\mathrm{xn}-\mathrm{t}}} \\
& =5631!!! \\
& L_{t}=0.05 \operatorname{Re} \operatorname{Pr} D \\
& =(0.05)(3.96)(5631) \cdot(0.020 \mathrm{~m})=22.3 \mathrm{~m}
\end{aligned}
$$

USE AVG. IN U CORRELATION FOR DEVELGANG REGIN:

$$
\begin{equation*}
\mathrm{Na}_{a}=3.66+\frac{(0.065)\left(D^{\prime} / \hat{L}\right) \mathbb{R e}^{\prime} \mathbb{P}_{r}}{1+(0.04)\left[(D / L) \mathbb{R e} \mathbb{R}_{r}\right]^{2 / 3}} \tag{1}
\end{equation*}
$$

NOTE THAT THIS DEPENDS ON L, WM WE DUNT KNOW YET! hence, part c) \& b) MUST be solved simultaneously i iteratively:

$$
\begin{aligned}
& \dot{Q}=h A(L M T D) \\
& \dot{Q}=\vec{h}(\Pi D L)(L M T D) \quad(2)
\end{aligned}
$$

$$
\begin{equation*}
N_{u}=\frac{h D}{k} \tag{3}
\end{equation*}
$$

EQNS (11) \rightarrow (3) CAN BE Saved TTERATVEYY. I WOULD GUESS $\mathrm{Nu}_{4}=3.66$ FIRST (FD VALE), FIND 1 FROM (3) \& TULEN L FROM (2). TLIEN I WOLD USE (1) TO FIND A BETTER Nu \& REPEAT OR USE ENS (ANTA (HEX)

RESULT: $\quad N G=5.24$

$$
\begin{aligned}
& h=74.9 \text { Whin'. } \\
& L=12.9 \mathrm{~m}
\end{aligned}
$$

$\mathrm{k}=0.286 \quad[\mathrm{~W} / \mathrm{m}-\mathrm{C}]$
$\operatorname{Re}=3.96$
$\operatorname{Pr}=5631$
$\mathrm{T}_{\text {in }}=25[\mathrm{C}]$
$\mathrm{T}_{\text {out }}=35[\mathrm{C}]$
$T_{\text {wall }}=47[C]$
$D=0.02 \quad[\mathrm{~m}]$
LMTD $=\frac{T_{\text {wall }}-T_{\text {in }}-\left[T_{\text {wall }}-T_{\text {out }}\right]}{\ln \left[\frac{T_{\text {wall }}-T_{\text {in }}}{T_{\text {wall }}-T_{\text {out }}}\right]}$
Nus $=\mathrm{h} \cdot \frac{\mathrm{D}}{\mathrm{k}}$

Nus $=3.66+\frac{0.065 \cdot \frac{D}{L} \cdot \operatorname{Re} \cdot \operatorname{Pr}}{1+0.04 \cdot\left[\frac{D}{L} \cdot \operatorname{Re} \cdot \operatorname{Pr}\right]^{\left[\begin{array}{ll}2 / 3\end{array}\right]}}$
$\dot{\mathrm{Q}}=\mathrm{h} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{L} \cdot$ LMTD
$\dot{Q}=1000 \quad[\mathrm{~W}]$
$\mathbf{k}_{\text {meth }}=\mathbf{k}$ ['Methanol' , $\mathrm{T}=25, \mathrm{P}=101$]

SOLUTION

Unit Settings: $[\mathrm{kJ}] /[\mathrm{C}] /[\mathrm{kPa}] /[\mathrm{kg}] /[$ degrees $]$
$D=0.02[\mathrm{~m}]$
$L=12.87[\mathrm{~m}]$
$\dot{\mathrm{Q}}=1000$ [W]
$\mathrm{h}=74.93\left[\mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}\right]$
LMTD $=16.5$ [C]
$\operatorname{Re}=3.96$

$$
\begin{array}{ll}
\mathrm{k}=0.286[\mathrm{~W} / \mathrm{m}-\mathrm{C}] & \mathrm{k}_{\text {meth }}=0.1983 \\
\text { Nus }=5.24 & \mathrm{Pr}=5631 \\
\mathrm{~T}_{\text {in }}=25[\mathrm{C}] & \mathrm{T}_{\text {out }}=35[\mathrm{C}]
\end{array}
$$

$$
\begin{aligned}
& D_{h}=10.23- \\
& \mathbb{R e}_{e}=\frac{\rho V D_{h}}{\mu}
\end{aligned}
$$

$$
\dot{\forall}=X A
$$

$$
V=\dot{\forall} / \mathrm{A}=\frac{8.5 \mathrm{l} / \mathrm{s}}{\frac{\pi\left(10.23^{2}-6.034^{2}\right)}{4} \mathrm{~cm}^{2}}
$$

$$
=0.1585 \frac{\mathrm{l}}{\mathrm{~cm}^{2} \mathrm{~s}} \times\left(\frac{1000 \mathrm{~cm}^{3}}{1}\right)
$$

$$
=158.5 \mathrm{~cm} / \mathrm{s}=1.585 \mathrm{~m} / \mathrm{s}
$$

$$
\mathbb{R e}_{e}=\frac{\left(788.4 \frac{\mathrm{~kg}}{\mathrm{ran}^{3}}\right)\left(1.585 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(4.196 \times 10^{-2} \mathrm{~m}\right)}{\left(0.586 \times 10^{-3} \frac{\mathrm{ky}}{\mathrm{ph}-8}\right)}=\underbrace{89.477}
$$

TURBVENT

$$
\begin{array}{rlrl}
\mathbb{N u}_{u} & =0.023 \mathbb{R}_{e}^{0.5} \mathbb{P}_{r}^{0.4} \\
& =(0.023)(87,477)^{0.8}(4.33)^{0.4} & \operatorname{Pr}_{r} & =\frac{\mu c}{k}=\ldots=4.33 \\
& =371.6=\frac{h \cdot D_{h}}{12} & h & =\frac{N u \cdot k}{D_{h}}=\frac{(371.6)\left(0.286 \mathrm{~W} / \mathrm{m}^{2}(\cdot)\right.}{4.196 \times 10^{-2} \mathrm{~m}} \\
& =2532 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{c}_{0}
\end{array}
$$

$$
\begin{aligned}
& D_{h}=\frac{4 A}{P}=\frac{\not X\left[\frac{X \cdot 1 D_{\text {our }}^{2}}{4}-\frac{\pi C D_{i N}^{2}}{4}\right]}{\pi 10_{0 U T}+\pi O D_{\text {No }}} \\
& =\frac{1 D_{\text {out }}^{2}-O D_{1 N}^{2}}{D_{\text {out }}+O D_{\text {iN }}}=\frac{\left(1 D_{\text {in }}+C D_{i N}\right)\left(D_{\text {out }}-C D_{1 N}\right)}{\left(1 D_{\text {ot }}+O D_{i N}\right)} \\
& =1 D_{\text {OUT }}-O D_{\text {In }}
\end{aligned}
$$

SOME FUKS USE AN EQUIVALENT DIAMETER FOR NU GIVEN BY

$$
D_{e} \equiv \frac{4 A}{P_{\text {HEAR CS }}}
$$

WHERE $P_{\text {Heron }}$ is ONLY THAT portion of The perimeter where \dot{Q} is crossing.
FOR EXAMPLE, LET'S SAY That the OUTER PERIMETER IS INSULATED, BUT \dot{Q} CROSSES THE INNER DIAMETER:

$$
\begin{aligned}
D_{e} & =\frac{4 A}{P}=\frac{\not 4\left[\frac{\pi D_{a r}^{2}}{4}-\pi \frac{C D_{1 \omega}^{2}}{4}\right]}{\pi O D_{1 W}} \\
& =\underbrace{11.31 \mathrm{~cm}}
\end{aligned}
$$

This GIVES:

$$
\begin{aligned}
& \mathbb{R} e=\frac{e V D_{e}}{\mu}=\frac{(788.4)(1.585)\left(11.31 \times 10^{-2}\right)}{\left(0.586 \times 10^{-3}\right)}=241,177 \\
& \mathbb{N u}=0.023 \mathbb{R e}^{0.8} \mathbb{P}_{r}^{0.4}=\ldots=836 \Rightarrow h=\frac{\mathrm{Nu} \cdot \mathrm{k}}{D_{e}} \\
& h=\frac{(836)(0.286)}{\left(11.31 \times 10^{-2}\right)}=2114 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{c}^{0}
\end{aligned}
$$

