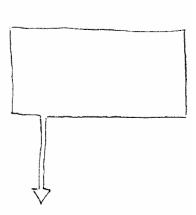

NOTES: Natural convection

. IN FORCED CONVECTION FLUID MOTION IS CAUSED BY APPLIED PRESSURE GRADIENTS. THE IS ACCOMPLISHED BY PUMPS, FANS, BLOWERS, ETC.

OR FREE CONVECTION, FLUID MOTION IS
ATURAL

CAUSED BY


· CONSIDER A RUBBER DUCKIE FLOATING BENIEATH THE SURFACE OF A BATHTUB!

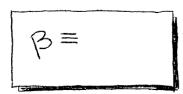
TWO FORCES ACT ON THE DUCKIE!

THE NET UPWARD FORCE IS, THEN

NOTES: Natural convection

NOW RATHER THAN A RUBBER DUCKIE, LET'S SAY YOU'VE GOT A FLUID PARTICLE THAT'S

IT A MEDIUM THAT'S


W	FNET, UP =
FB	

WHAT DO YOU KNOW
ABOUT & OF HOT
FLUIDS COMPARED
TO & OF COLD FLUIDS?

	THAT	THEN	SEE,	WE
CAUSE		<u> </u>		
CAUSE			Positive and the second se	-

AND WHERE THERE'S _____ THERE'S CONVECTION!

NOTES: Natural convection

FNET, UP ~

- . IF T>Too
- · IF T<To

CONSIDER TWO PLATES SEPARATED BY AN INITIALLY STILL FLUID.

FLUID

FLUID

SUDDENLY WE HEAT ONE of THE PLATES, IN (a) WE HEAT THE TOP PLATE SUCH THAT T, >T2. IN (b), T2>T1.

What happens?

	_	
NOTES:	Natural	convection
INCILS.	INGLAIGI	COLIVECTION

IF BUDYANKY MOVES FLUID, WHAT OPPOSES THE MUTTON?

LET'S DEFINE A DIMENSIONLESS NUMBER THAT MEASURES THE RELATIVE IMPORTANCE of THESE FORCES:

Gr = _____

Cr =

LOW GO MEANS _____.