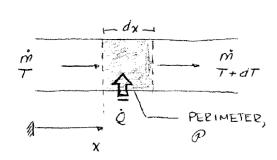

NOTES: Internal convection	
TWO TYPES OF . EXTERNAL	
FOR: INTERNAL	
EXTERNAL	
[INTERNAL FLOW]	
c How does internal flow differ from external in terms of boundary layers?	1 flow
VELOCITY (MONDITUM) BOUND LAYER	
2/2	Do you expect Cf (or f) # Mu to be higher in
THERMAL BOUNDARY LAYER	the developing region or the fully developed

YOU CAN SEE THAT V= Ver) & T= Ter) IN THE INTERNAL FLOW CASE. LET US DEFINE, THEN



OUR

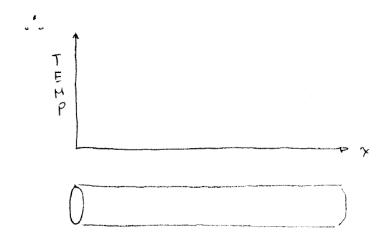
& WHAT TS-TM DO I USE ?

TAKE A SMALL SLICE of PIPE

Cons of Energy
$$\frac{dE}{dt} = \dot{Q}_{in} + \dot{W}_{in} + \sum_{in} \dot{m}(h + ...)$$

$$-\sum_{ox} \dot{m}(h + ...)$$

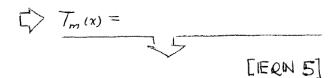
[EQNZ]

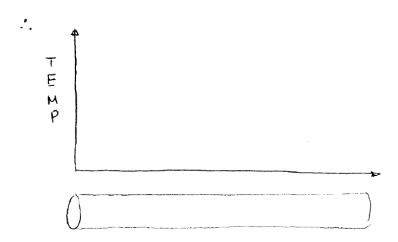

COMBINING [1] & [2]

[EQN 3]

[1] SAYS

[2] SAYS
(IF h= const)




$$\dot{q} = \dot{q} = \dot{q}$$

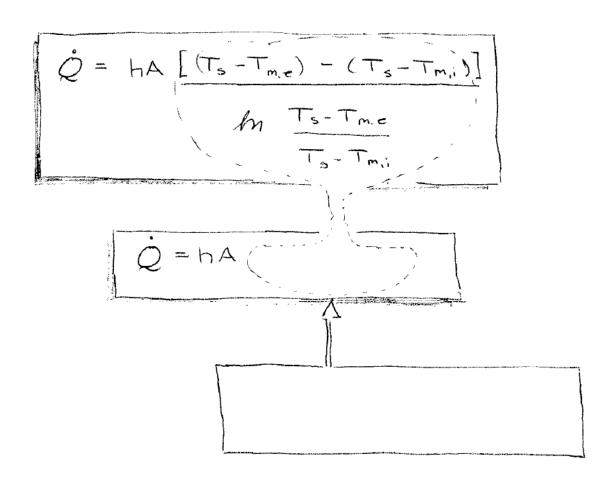
G = CONST BOUNDARY CONDITION

[3] SAYS

LET'S USE

¿ What is ATAVE?

Cons. of Energy on whole tube -


$$T_{m,i}$$
 Q $T_{m,e}$

[EQN 6]

[5] FOR THE TUBE EXIT (@ x=L) GIVES

[EQN 7]

COMBINE [6] # [7] TO ELIMINATE MICP

