BOILING HEAT TRANSFER - BOILING OCCURS AT A SOLID-LIQUID INTERFACE WHEN THE TEMPERTURE of THE SOLID, 73, IS SUFFICENTLY ABOVE THE SATURATION TEMPERTURE of THE LIQUID, 7507. - THE DIFFERENCE BETWEEN THE SURFACE & SATURATION TEMPERATURES IS KNOWN AS THE BOILING IS CONSIDERED A FORM of CONVECTION, & BOILING HEAT PLUX IS EXPRESSED AS $$\frac{\dot{g}}{g}_{BOILING} = h(\mathcal{T}_s - \mathcal{T}_s) = \frac{1}{(W/M^2)}$$ SINGLE-PHASE CONVECTION DEPENDS ON MANY PROPERTIES SUCH AS 8, H, E, Cp, etc. BOLLING ALSO DEPEND ON THESE, EUR BOTH PHASES, AS WELL AS | h_{fg} : | | A | |------------|--|----------| | σ: | | | PEPENDING ON THE STATE of BULK MOTION of THE FLUID, BOILING CAN BE CLASSIFIED AS | NOTES: Boiling heat transfer | |--| | | | · BOILING CAN ALSO BE CLASSIFIED BASED ON THE | | BULK LIQUID TEMPERATURE. IN THE CASE WHERE THE | | BULK LIQUID TEMPERATURE IS | | 1) LESS THAN TSAT, WE HAVE | | 2) IF TBUK, LIQUID = TOAT, WE HAVE | | · IN ADDITION TO THE INHERENT COMPLEXITY OF CONVECTION | | (NATRURAL \$/OR FORCED) & PHASE CHANGE, BOILING IS FURTHER | | COMPLICATED BY | | THERMODYNAMIC NON-ERUILIBRIUM. | | IN PARTICULAR, ARE GENERALLY | NOT IN THERMOPYNAMIC EQUILIBRIUM WITH THE _____. CONSIDER A VAPOR BUBBLE! (CUT INHALF) Find: RELN BETWEEN PV, P. €0. Soln: FORCE BALANCE ON THE BUBBLE ! Purus **NOTES:** Boiling heat transfer ## BOILING REGIMES & THE BOILING CURVE: A FUNCTIONAL DEPENDANCE EXISTS BETWEEN BOILING HEAT PLUX & EXCESS TEMPERATURE. THIS DEPENDENCE IS ILLUST PATED ON THE ________. THE BOILING CURVE IS DIVIDED INTO A NUMBER OF REGIMES. 1) NATURAL CONVECTION BOILING (WHERE IS IT ON THE CURVE?) (WHAT ARE SUME CHARACIBRISTICS 2) THIS REGIME?) 2) NUCLEATE BOILING (WHERE IS IT ON THE CHEVE?) 3) TRANSITION BOILING 4) FILM BOILING | CRITICAL | HEAT | FLUX | |----------|------|------| | | | | | IN HEAT INPUT CONTROLLED SITUATIONS (MOST REAL SITUATIONS) | | |--|--| | ALMOST INSTANTANEOUSLY, RESULTING IN SURFACE TEMPERATURES ON THE ORDER of 1000°C. FOR THIS REASON, CRITICAL HEAT FLUX (CHF) IS ALSO KNOWN AS | | | THE OR SIMPLY | |