BOILING HEAT TRANSFER

- BOILING OCCURS AT A SOLID-LIQUID INTERFACE WHEN THE TEMPERTURE of THE SOLID, 73, IS SUFFICENTLY ABOVE THE SATURATION TEMPERTURE of THE LIQUID, 7507.
- THE DIFFERENCE BETWEEN THE SURFACE & SATURATION
 TEMPERATURES IS KNOWN AS THE

BOILING IS CONSIDERED A FORM of CONVECTION, & BOILING
HEAT PLUX IS EXPRESSED AS

$$\frac{\dot{g}}{g}_{BOILING} = h(\mathcal{T}_s - \mathcal{T}_s) = \frac{1}{(W/M^2)}$$

SINGLE-PHASE CONVECTION DEPENDS ON MANY PROPERTIES SUCH AS 8, H, E, Cp, etc. BOLLING ALSO DEPEND ON THESE, EUR BOTH PHASES, AS WELL AS

h_{fg} :		A
σ:		

PEPENDING ON THE STATE of BULK MOTION of THE FLUID, BOILING CAN BE CLASSIFIED AS

NOTES: Boiling heat transfer
· BOILING CAN ALSO BE CLASSIFIED BASED ON THE
BULK LIQUID TEMPERATURE. IN THE CASE WHERE THE
BULK LIQUID TEMPERATURE IS
1) LESS THAN TSAT, WE HAVE
2) IF TBUK, LIQUID = TOAT, WE HAVE
· IN ADDITION TO THE INHERENT COMPLEXITY OF CONVECTION
(NATRURAL \$/OR FORCED) & PHASE CHANGE, BOILING IS FURTHER
COMPLICATED BY
THERMODYNAMIC NON-ERUILIBRIUM.
IN PARTICULAR, ARE GENERALLY

NOT IN THERMOPYNAMIC EQUILIBRIUM WITH THE _____.

CONSIDER A VAPOR BUBBLE!

(CUT INHALF)

Find: RELN BETWEEN PV, P. €0.

Soln:

FORCE BALANCE ON

THE BUBBLE !

Purus

NOTES: Boiling heat transfer

BOILING REGIMES & THE BOILING CURVE:

A FUNCTIONAL DEPENDANCE EXISTS BETWEEN BOILING HEAT

PLUX & EXCESS TEMPERATURE. THIS DEPENDENCE IS

ILLUST PATED ON THE ________.

THE BOILING CURVE IS DIVIDED INTO A NUMBER OF REGIMES.

1) NATURAL CONVECTION BOILING (WHERE IS IT ON THE CURVE?)

(WHAT ARE SUME CHARACIBRISTICS

2) THIS REGIME?)

2) NUCLEATE BOILING (WHERE IS IT ON THE CHEVE?)

3) TRANSITION BOILING

4) FILM BOILING

CRITICAL	HEAT	FLUX

IN HEAT INPUT CONTROLLED SITUATIONS (MOST REAL SITUATIONS)	
ALMOST INSTANTANEOUSLY, RESULTING IN SURFACE TEMPERATURES ON THE ORDER of 1000°C. FOR THIS REASON, CRITICAL HEAT FLUX (CHF) IS ALSO KNOWN AS	
THE OR SIMPLY	