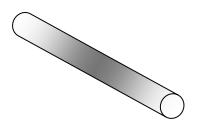
Example

A long cylinder of cross section *A* is insulated along its outer diameter and is subject to a uniform internal heat generation per unit volume of \dot{e}_{gen} . Assuming constant conductivity *k* and specific heat *c*, find a differential equation describing the temperature distribution as a function of length and time.



Example

The temperature distribution in a wall 1m thick at a certain instant of time is given as

$$T(x) = a + bx + cx^2$$

where *T* is in ^cC and *x* is in m. The constants are $a = 900^{\circ}$ C, $b = -300^{\circ}$ C/m and $c = -50^{\circ}$ C/m². A uniform heat generation $\dot{e}_{gen} = 1000 \text{ W/m}^3$ exists in the wall. The wall area is 10 m² and has the following properties: $\rho = 1600 \text{ kg/m}^3$, k = 40 W/m-K and $c_p = 4 \text{ kJ/kg-K}$. Determine:

- 1. the rate of heat transfer entering the wall and leaving the wall. (*x*=0 and 1 m, respectively),
- 2. the rate of change of energy storage in the wall, and
- 3. the time rate of temperature change at x = 0 and 0.25 m.