Example
A counter-flow double-pipe heat exchanger is to heat water from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ at a flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. The warmer fluid is geothermal water available at $160^{\circ} \mathrm{C}$ and a flow rate of 2 kg / s. The inner tube is thin-walled with a diameter of 1.5 cm . If the overall heat transfer coefficient is $640 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{\circ}$, find the required heat exchanger length.

CuE on hot fluid

$$
\begin{aligned}
& \frac{d}{d t}(E)=\dot{Q}_{I N}+L_{0}+\dot{m}_{n}\left(h_{h_{i n}}\right)-\dot{n}\left(h_{\text {arr }}\right) \\
& \quad \dot{Q}_{a r}=-\dot{Q}_{a v}=\dot{n}_{n}\left(h_{h_{\text {in }}}-h_{\text {hor }}\right)=\dot{m}_{n} c_{\beta_{i n}}\left(T_{h_{\text {in }}}-T_{\text {hare }}\right)
\end{aligned}
$$

COE cold fluid

$$
\begin{aligned}
& \frac{d}{d t}(E)=\dot{Q}_{0}+L_{0}+\dot{m}_{c}\left(h_{\text {cit }}+\ldots\right)-m_{c}\left(h_{c A T}+\ldots\right) \\
& \dot{Q}_{\text {iN }}=\dot{m}_{c}\left(h_{c, 0 c T}-h_{c, i n}\right)=\dot{m}_{c} c_{p, c}\left(T_{c, a r}-T_{c, i n}\right) \\
& =\left(12 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(4189 \frac{\pi}{k g \cdot k}\right) \cdot(80-20)^{\circ} \mathrm{C}\left\langle\frac{w \cdot s}{3}\right\rangle \\
& =302,000 \mathrm{~m}
\end{aligned}
$$

Back to hat fluid. Solve for $T_{\text {h, at }}$

$$
T_{n, \alpha T}-T_{n, n}-\frac{\dot{Q}_{o r}}{\dot{m}_{n} c_{\rho, n}}=\ldots=125^{\circ} \mathrm{C}
$$

Now can use LMTD relation:

$$
\begin{aligned}
& \dot{Q}=U A \Delta T_{L M} . \quad A=\frac{\dot{D}}{U \Delta T_{L M}} \\
& \Delta T_{\text {LM }}=\frac{\left(T_{\text {nat }}-T_{\text {in }}\right)-\left(T_{\text {hin }}-T_{\text {car }}\right)}{\ln \left(\frac{T_{\text {hard }}-T_{\text {in }}}{T_{\text {hin }}-T_{\text {cat }}}\right)}=\frac{(125-20)-(160-80)}{\ln \left(\frac{125-20}{160-80}\right)} \\
& =92^{\circ} \mathrm{C} \\
& A=\frac{302,000}{\left(640 \frac{v}{\mathrm{~m}^{2} \%}\right)(92 \%)}=5.13 \mathrm{~m}^{2} \\
& A=\pi D L \\
& L=\frac{A}{\pi D}=\frac{5.13 \mathrm{~m}^{2}}{(\pi)(0.015 \mathrm{~m})}=109 \mathrm{~m}
\end{aligned}
$$

Example

Reconsider the last example, but this time make the heat exchanger a parallel flow design. As before, the heat exchanger is a double-pipe design, and is used to heat water from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ at a flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. The warmer fluid is geothermal water available at $160^{\circ} \mathrm{C}$ and a flow rate of $2 \mathrm{~kg} / \mathrm{s}$. The inner tube is thin-walled with a diameter of 1.5 cm . If the overall heat transfer coefficient is 640 $\mathrm{W} / \mathrm{m}^{2}-\mathrm{C}^{0}$, find the required heat exchanger length.

Do not need to redo the conservation $\&$ energy.
The rate of heat transfer remains unchanged q so do the temperatures. LMTD changes.

$$
\begin{aligned}
& \Delta T_{L M}=\frac{\left(T_{\text {hin }}-T_{\text {cit }}\right)-\left(T_{\text {host }}-T_{\Gamma_{\text {aIt }}}\right)}{\ln \left(\frac{T_{\text {hin }}-T_{\text {cit }}}{T_{h_{\text {ar }}}-T_{\text {cat }}}\right)}=\frac{(160-20)-(125-80)}{\ln \left(\frac{160-20}{125-80}\right)} \\
& =83.7^{\circ} \mathrm{C} \text { Note it is smaller than } \Delta T_{L H, C F} \\
& A=\frac{\dot{Q}}{U A^{\top}{ }_{L \mu}}=\frac{302.000 \mathrm{~W}}{\left(640 \frac{\mathrm{~W}}{\mathrm{~m}^{\prime} \mathrm{V}}\right)\left(83.7^{\circ} \mathrm{C}\right)}=5.6^{4} \mathrm{~m}^{2} \\
& L=\frac{A}{\pi D}=\frac{5.64 \mathrm{~m}^{2}}{(\pi)(0.015 \mathrm{~m})}=120 \mathrm{~m}
\end{aligned}
$$

