Example
Two concentric cylinders are nested together coaxially as shown in the figure. Assuming the surfaces are diffuse,
(a) calculate the fraction of radiation leaving the outer surface of the inner cylinder that goes through the top and bottom openings.
(b) Calculate the fraction of radiation leaving the outer surface of the inner cylinder that goes through just the top opening.
(c) Calculate the fraction of radiation leaving the inner surface of the outer cylinder that goes through the top and bottom openings.

BOTTOM

$$
(3)=T O P+B O T O M
$$

Summation rule.

$$
\begin{aligned}
& F_{12}+F_{13}=1 \quad 1-F_{12}=F_{13} \\
& F_{13}=1-0.55=0.45
\end{aligned}
$$

(b) Superposition:

$$
\begin{aligned}
& F_{13}=F_{1-T O P}+F_{1-\text { BOTTOM }} \\
\therefore \quad & F_{13}=2 F_{1 \text { FOP }} \\
& F_{1-T O P}=F_{13} / 2=F_{1-\text { BOTCH }} \\
&
\end{aligned}
$$

Symmetry:

$$
\begin{aligned}
& F_{12}=\frac{A_{2}}{A_{1}} F_{21}=\frac{\mathbb{X D} D_{\text {outre }} K}{\# D_{\text {INNER }} K} \cdot F_{21} \\
& =\left(\frac{10 \mathrm{~cm}}{6 \mathrm{~cm}}\right)(0.330)=0.55
\end{aligned}
$$

$$
\text { Reciprocity: } \quad A_{1} F_{12}=A_{2} F_{21}
$$

$$
\left.\begin{array}{l}
\left.F_{2 \rightarrow 1}=f\left(r_{1} / r_{2}\right) L / r_{2}\right) \\
r_{1} / r_{2}=0.6 \\
L / r_{2}=0.5
\end{array}\right\} \quad F_{2 \rightarrow 1}=0.330
$$

(a) USING CHARTS/GRAPHS IM TEXT...
(c) Summation rule

$$
\begin{aligned}
& F_{2-1}+F_{2-2}+F_{2-3}=1 \\
& \text { CAREFUL! }^{F_{0}} \boldsymbol{\neq 0 !}
\end{aligned}
$$

From figure in text.

$$
\begin{aligned}
F_{22} & \approx 0.125 \\
\therefore F_{23} & =1-F_{21}-F_{22}=1-0.33-0.125 \\
& =0.545
\end{aligned}
$$

