Example
A one meter long aluminum cylinder 15.0 cm in diameter and initially at $200^{\circ} \mathrm{C}$ is suddenly exposed to a convection environment at $70^{\circ} \mathrm{C}$ and $h=573 \mathrm{~W} /\left(\mathrm{m}^{2-K}\right)$.
(a) Calculate the temperature at a radius of 1.73 cm 1 min after the cylinder is exposed to the environment.
(b) Calculate the heat lost 1 min after the cylinder is exposed to the environment. Express your answer in J.

Propriety data stable

$$
\begin{aligned}
& k=237 \mathrm{k} / \mathrm{m} \cdot \mathrm{k} \\
& \rho=2702 \mathrm{~kg} / \mathrm{m}^{3} \\
& c=903 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{k} \\
& \alpha=12 / \rho \mathrm{c}=97.1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Hint fine θ_{0} first.

$$
\begin{aligned}
& \mathbb{B}_{i}=\frac{h r_{0}}{k}=\frac{(573)(0.075)}{237}=0.1813 \\
& \mathbb{F}_{0}=\frac{\alpha t}{r_{0}^{2}}=\frac{\left(97.1 \times 10^{-6}\right)(605)}{(0.075)^{2}}=1.036>0.20 \mathrm{kQ}
\end{aligned}
$$

$$
\theta=\underbrace{A_{1} \exp \left(-\lambda_{1}^{2} F_{0}\right)}_{=} J_{0}\left(\lambda_{1} r / r_{0}\right)
$$

$$
\begin{aligned}
& \lambda_{1}=0.5842 \\
& A_{1}=1.0439
\end{aligned}
$$

$$
\left(1.0439=\exp \left((0.584)^{2}(1.036)\right) J_{0}\left(\lambda_{1} r / r_{0}\right)\right.
$$

$$
\begin{aligned}
& \theta=(0.7421) \mathrm{J}_{0}\left(\frac{\lambda_{1} r}{r_{0}}\right) \\
& \downarrow \\
& \frac{\lambda_{1} r}{r_{0}}=0.5842\left(\frac{1.73}{7.53}=0.1348\right.
\end{aligned}
$$

$$
\text { TABLE } J_{0}(0.1348)=0.9955
$$

$$
\begin{aligned}
& \theta=(0.7421)(0.9955)=0.7387 \\
& \begin{aligned}
& \theta=\frac{T-T_{\infty}}{T_{j}-T_{\infty}} \quad T(r, t)=\left(\theta \times T ;-T_{\infty}\right)+T_{\infty} \\
&=(0.7387)(200-70)^{\circ} \mathrm{C}+70^{\circ} \mathrm{t} \\
&=166^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
$$

(b)

$$
\frac{Q}{Q_{\text {Max }}}=1-2 \theta_{0} \frac{J_{1}\left(\lambda_{1}\right)}{\lambda_{1}}
$$

Table

$$
\begin{aligned}
& J_{1}(0.5842)=0.2798 \\
& \frac{Q}{Q_{\text {max }}}= 1-(2)(0.7421)\left(\frac{0.2798}{0.5842}\right)=0.2891 \\
& Q_{\text {max }}=\left.m C\left(T_{i}-T_{\infty}\right)=e \forall C C T_{i}-T_{\infty}\right) \\
&= e\left(\frac{\pi D^{2}}{4}-1\right)\left(T_{i}-T_{E}\right) \\
&=(2702)\left(\frac{\pi \times(0.15}{4}\right)^{2}(903)(200-70)=5.61 \mathrm{MJ} \\
& Q= \quad Q_{\text {MAx }}=(0.2891)(5.61)=1.62 \mathrm{MJ}
\end{aligned}
$$

