Example

A cryogenic fluid flows through a long tube of 20 mm diameter, the outer surface of which is diffuse and gray with $\varepsilon_{1}=0.02$ and $T_{1}=77 \mathrm{~K}$. (Ooh, that's cold!) The tube is concentric with a larger tube of 50 mm diameter, the inner surface of which is diffuse and gray with ε_{2} $=0.05$ and $T_{2}=300 \mathrm{~K}$. The space between the surfaces is evacuated. If the tube is 1 m long (into the paper)
(a) calculate the heat gain by the cryogenic fluid.
(b) If a thin radiation shield of 35 mm diameter and $\varepsilon_{3}=0.02$ on both sides is inserted midway between the inner and outer surfaces, calculate the heat gain by the cryogenic fluid. What is the percentage change in heat gain?

with shield

