
Example

0.2 kg/s of hot oil (c_p = 2200 J/kg-°C) is to be cooled by water (c_p = 4180 J/kg-°C) in a 2-12 shell and tube HXR. The water flows through thin-walled tubes with a diameter of 1.8 cm at a rate of 0.1 kg/s. The length of each tube pass is 3 m and the overall heat transfer coefficient is 340 W/m²-°C. (Tube side or shell side? Does it matter?) The inlet temperatures of the oil and water are 160°C and 18°C, respectively.

- (a) Find the rate of heat transfer in the exchanger and
- (b) the exit temperatures of both fluids.

b) OIL: WATER:
$$\dot{Q} = (\dot{M}C)_{oil}(T_i - T_z)$$

$$\dot{Q} = (\dot{M}C)_{wat}(t_z - t_i)$$

$$\dot{T}_z = T_i - \dot{Q}_{i}$$

$$(\dot{M}C)_{oil}$$

$$\dot{T}_z = t_i + \dot{Q}_{i}$$

$$(\dot{M}C)_{wat}$$

$$= ... = [77.7°C]$$

$$= ... = [105°C]$$