Example
Assume that a person can be approximated as a cylinder of 0.3-m diameter and 1.8 m height with a surface temperature of $25^{\circ} \mathrm{C}$. Calculate the body heat loss while this person is subjected to a $15 \mathrm{~m} / \mathrm{s}$ wind whose temperature is $-5^{\circ} \mathrm{C}$.

$D=0.3 \mathrm{~m}$

$$
\begin{aligned}
& T_{f}=\frac{T_{s}+T_{6}}{2}=10^{\circ} \mathrm{C} \\
& \text { - } \rho\left(P_{\text {ATm }}\right)=1.246 \operatorname{2g} / \mathrm{m}^{3} \quad P_{r}=0.7336 \\
& 0 \mathrm{M}=1.778 \times 10^{-5} \mathrm{mo} / \mathrm{M} \cdot \mathrm{~S} \\
& { }^{\circ} \mathrm{k}=0.02+39 \mathrm{~W} / \mathrm{m}-6
\end{aligned}
$$

Reynards \#

$$
\begin{aligned}
& \operatorname{Re}=\frac{\rho U_{\infty} D}{\mu}=\frac{(1.246)(15)(0.3)}{\left(1.728 \times 10^{-5}\right)} \frac{\mathrm{kg}}{D+\frac{D 4}{g}} \cdot \frac{m \cdot g}{D y}=315,354 \\
& N_{\text {Nu }}=\frac{h D}{k}=0.3+\frac{0.62 \mathbb{R e}^{V_{2}} \mathbb{P r}^{1 / 3}}{\left.\left[1+10.4 / \mathbb{P r}^{2 / 3}\right)\right]^{1 / 4}}\left[1+\left(\frac{R e}{282,000}\right)^{5 / 8}\right]^{4 / 5}
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{\mathbb{N u R}}{D}=40,26 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}} \\
& \longrightarrow h=529 \mathrm{w} / \mathrm{m}^{2}-\mathrm{k} \\
& L \underset{Q}{\dot{Q}=2049 \mathrm{~W}} \\
& \dot{9}=2690 \mathrm{~W}
\end{aligned}
$$

