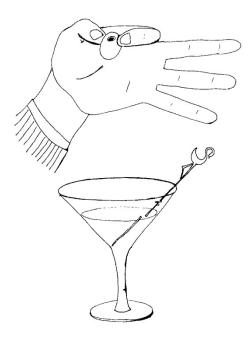
ACTIVE LEARNING EXERCISE: The lumped capacitance method

Consider a frozen olive initially at a temperature of T_i that is dropped into a martini at a temperature T_{∞} . We then stir the martini with a flamingo swizzle stick. We are interested in how the olive temperature changes with time, most notably how long it takes to warm up to T_{∞} .



Write **thermal energy balance** for the frozen olive for the time after is dropped into the martini. *Assume that the entire olive is at only one temperature at any point in time*. This is the **lumped capacitance assumption**.

What is the mode of heat transfer to the olive? ______.

Rewrite the thermal energy balance.

This is a linear, non-homogeneous first order differential equation. We can make is homogeneous by letting

$$\theta = T - T_{\infty}$$

Do it!

Solve by direct integration:

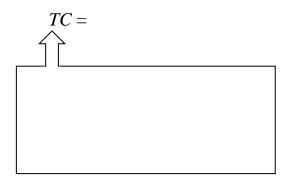
Apply the initial condition:

The solution to this equation is given by

Rearrange a bit

$$\frac{T-T_{\infty}}{T_i-T_{\infty}} =$$

where



Now this model says that the olive never reaches T_{∞} , but it is generally accepted that 4τ is close enough. (At $4 \cdot TC$ you're 98% of the way there).

If the convective heat transfer coefficient between an olive and the martini is h = 100 W/(m²·K) and the properties of a typical 2-cm diameter spherical olive are given by $\rho = 850$ kg/m³ and $c_p = 1780$ J/(kg·K), we can calculate *TC* to be

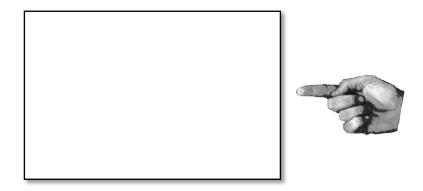
TC =

which means that in about _____ (or $4 \cdot TC$) the olive has reached T_{∞} .

In this, we *assumed* that the entire olive was at one temperature. In other words, we ignored any temperature gradients within the olive and therefore any ______ heat transfer within it.¹ Was this a good assumption? Let's find out.

The ______ is a measure of the internal resistance to conduction of an object to the external convection to which it is subject. It is defined as

Bi = _____ = ____



¹ Actually, we're not ignoring it as much as we are assuming that it is infinitely efficient!

If the Biot number is small ($Bi \ll 1$) then this assumption isn't too bad. With $k_{olive} = 0.350$ W/(m²·C°) and $L_{char} = V_0/A = r/3$, for the macro-olive we get

$$Bi = \frac{100 \frac{W}{m^2 \cdot C^{o}} \cdot (0.01/3) m}{0.350 \frac{W}{m \cdot C^{o}}} =$$

<i>Bi</i> << 1	Bi = 1	Bi >> 1