HOW TO PERFORM A

III - Internal Flow

I BECOME AWARE of THE GEOMETRY. IF ITS A NON-CIRCULAR DUCT, FIND

$$D_{h} = \frac{4A_{c}}{P}$$

THE HYDRAULIC DIAMETER

SPECIFY THE APPROPRIATE REFERENCE TEMPERATURE &

FIND THE FLUID PROPERTIES. USUALLY (NOT ALWAYS) YOU WANT THE

BULK MEAN FLUID TEMPERATURE

$$T_b = \frac{T_{m,in} + T_{m,out}}{2}$$

CALCULATE THE REYNOLD'S NUMBER

$$Re = \frac{eV(Dor D_h)}{\mu} = \frac{V(Dor D_h)}{2r}$$

$$CAREFUL!$$

& DETERMINE IF THE FLOW IS

FULLY-DEVELOPED -or- DEVELOPIN (

5. SELECT THE APPROPRIATE CORRELATION ...

1

(FOR INTERNAL FLOW)

Correlations for T_S = const. Boundary Condition

Correlation	Geometry	Conditions
$f = 64/Re_D$	Circular duct	Laminar, Fully developed, Use T_b
$Nu_D = 3.66$	Circular duct	Laminar, Fully developed, Use T_b
$Nu = 1.86 \left(\frac{RePrD}{L}\right)^{1/3} \left(\frac{\mu}{\mu}\right)^{0.14}$	Circular duct	Laminar, Developing, Use T_b for all properties except μ_S , for which you use T_S
$f = \text{constant}/Re_{Dh}$	Non-circular duct	Laminar, Fully developed, Use T_b , Use Tables in $+e\times 1$ to find constant
$Nu_{Dh} = \text{constant}$	Non-circular duct	Laminar, Fully developed, Use T., Use Table5 in text to find constant
$f = 0.184 Re_{Dh}^{-0.2}$	Circular or non- circular ducts	Turbulent, Fully developed, smooth surfaces, Use T_b
$f \Rightarrow$ Use Moody Chart	Circular or non- circular ducts	Turbulent, Fully developed, smooth or rough surfaces, Use T_b
$Nu_{Dh} = 0.125 * f * Re_{Dh} * Pr^{1/3}$	Circular or non- circular ducts	Turbulent, Fully developed, smooth or rough surfaces, Use T_b
$Nu_{Dh} = 0.023*Re_{Dh}^{0.8}*Pr^n$ $n = 0.4$ for heating = 0.3 for cooling	Circular or non- circular ducts	Turbulent, Fully developed, smooth or rough surfaces, Use T_b , $0.7 < Pr < 160$, $Re > 10,000$

Correlations for \dot{q} = const. Boundary Condition

Correlation	Geometry	Conditions
$Nu_D = 4.36$	Circular duct	Laminar, Fully developed, Use T_b
$Nu_{Dh} = \text{constant}$	Non-circular duct	Laminar, Fully developed, Use T_b , Use Table s in $text$ to find constant
Turbulent flow is rather in:	sensitive to boundary conditio	ns. Use previous correlations.

THA!