The number of independent, intensive properties needed to fix the state of a substance is equal to the number of quasistatic work mades plus one.

* State: condition of a system described by the value of its properties

circular definition: see definition, circular definition, circular: see circular definition

• A		HAB ONLY WORK MODE
。 A		HAS ONLY
WORK MODE,	AND ITS	WORK.

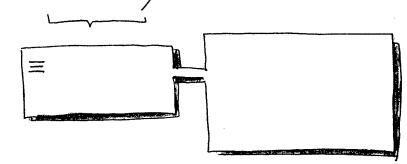
THE STATE POSTULATE FOR A SIMPLE COMPRESSIBLE SYSTEM SAYS THAT YOU NEED ...

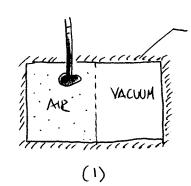
PROPERTIES

(TO FIX THE STATE!)

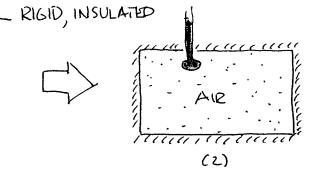
EXAMPLES

$$u = u($$
)

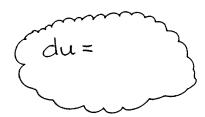

WHY IS THIS TONE SO IMPORTANT?


FOR ANYTHING ...

$$u = u(v, T)$$

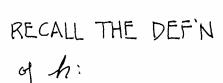


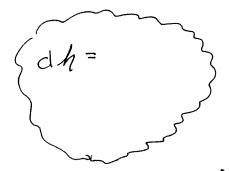
JOULE'S EXPERIMENT:



FROM CONS. of ENERGY

$$U_2 = \overline{U}_1 \quad \text{$\stackrel{\bullet}{=}$} \quad \therefore$$


$$du = \frac{\partial u}{\partial v} dv + \frac{\partial u}{\partial T} dT$$


$$h = h(,)$$

=

AND SO FOR AN IDEAL CLAS A=

dh =

*

IFF
$$C_v = CONST$$
 AND $C_p = CONST$ COULT $U_2 - U_1 = C_v(T_2 - T_1)$

* CAH YOU SHOW THAT R = Cp-Cv?