

Most commonly

or

Complete combustion

- Only ___ and ____ formed.
- N₂ is _______.
- Enough ___ supplied to convert all __ and __ to CO2 and H2O.

Model for air

For ____ air (by volume)

Component	fraction
O ₂	
N ₂	

Dalton's other model strikes again!

or

$$O_2 + O_2 + O_2 + O_2 + O_2 = O_2 + O_2 + O_2 = O_2 + O_2 + O_2 = O_2 + O_2$$

Remember $M_{air} =$ _____kg/kmol

Stoichiometric reaction

- The correct amount of air needed for above is

_____or _____

- More or less air is
 - o % _____ air
 - o % _____ air
 - o % _____ air, etc.

Air-fuel ratio

AF = _____ = ____

FA = _____ = ____

Equivalence ratio

Φ = _____

 $\Phi < _ \rightarrow$ "Lean"

₱ 1 → "______"

Balancing chemical reactions

It's just _____!

You remember how to do it from CHEM101, yes?