Most commonly or ## Complete combustion - Only ___ and ____ formed. - N₂ is _______. - Enough ___ supplied to convert all __ and __ to CO2 and H2O. ## Model for air For ____ air (by volume) | Component | fraction | |----------------|----------| | O ₂ | | | N ₂ | | Dalton's other model strikes again! or $$O_2 + O_2 + O_2 + O_2 + O_2 = + O_2 = O_2 + O_2 + O_2 = O_2 + O_2$$ Remember $M_{air} =$ _____kg/kmol #### Stoichiometric reaction - The correct amount of air needed for above is _____or _____ - More or less air is - o % _____ air - o % _____ air - o % _____ air, etc. ### Air-fuel ratio AF = _____ = ____ FA = _____ = ____ ### Equivalence ratio Φ = _____ $\Phi < _ \rightarrow$ "Lean" ₱ 1 → "______" ## Balancing chemical reactions It's just _____! You remember how to do it from CHEM101, yes?