CONSIDER A FURNACE THAT UTILIZES THERMAL ENERGY FROM A SOURCE AT TEMPERATURE \mathcal{T}_s AND DELIVERS IT TO A HEATED SAPCE AT \mathcal{T}_u . THERMAL ENERGY IS LOST AT \mathcal{T}_t .

WRITE CONSERVATION OF ENERGY FOR THE FURNACE:

USING YOUR RESULTS, DEFINE A FURNACE EFFICIENCY

NOW WRITE THE ACCOUNTING OF EXERGY FOR THE FURNACE:

USING YOUR RESULTS, DEFINE AN **EXERGETIC EFFICIENCY** FOR THE FURNACE EFFICIENCY

NOW EXPRESS YOUR EXERGETIC EFFICIENCY IN TERMS OF THE FURNACE EFFICIENCY, η

PLOT EXERGETIC EFFICIENCY AS A FUNCION OF T_u FOR T_s = 1200 K, 1000 K AND 800 K. ASSUME η = 1 AND T_0 = 300 K.

USING THIS SAME APPROACH, FIND EXPRESSIONS FOR THE EXERGETIC EFFICIENCIES OF THE FOLLOWING COMPONENTS:

TURBINE:

COMPRESSORS/PUMPS:

HEAT EXCHANGERS: (3) (2) (1)

HEAT EXCHANGERS WITH MIXING:

