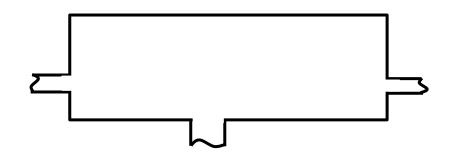


The adiabatic saturation temperature is a useful property of moist air that is solely a function of humidity ratio, total pressure, and dry-bulb temperature. That is

or if you solve for w,


Its utility comes from the fact that adiabatic saturation temperature is well-approximated by _____. That is

Let's find $w = w(T_{db}, T_{as}, P)$.

$$\omega = \omega(___, ___, __)$$

T_{as} ≈ _____

Write Conservation of Mass for the system.

For the *air* (*dry air*) only

And now for the water only

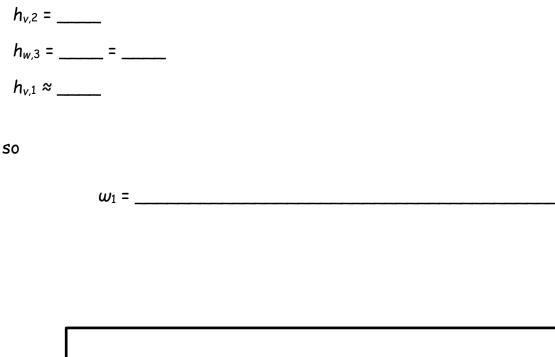
(1)

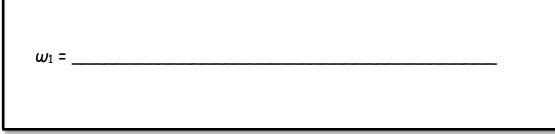
In terms of ω

Write Conservation of Energy for the system.

In terms of ω

(3)


Substitute (1) and (2) into (3)


Solve for ω_1 .

The	adiabatic	saturation	temperature	of	state	(1)	is	the	unique	
temperature for which = =					th φ_2 =		_%.			

Write a sentence that defines adiabatic saturation temperature:


For these conditions

where

