EXAMPLE: Isobaric process

A piston-cylinder contains 1.5 kg of air. Initially, the air is at 150 kPa and $20^{\circ} \mathrm{C}$. The air is compressed in an isobaric process (and that means...) until the volume is $1 \mathrm{~m}^{3}$. Assume that air is an ideal gas, but do not assume that the specific heats are constant. If the compression is quasistatic,

(a) find the work into the system, in kJ , and
(b) the heat transfer into the system, in kJ.

EXAMPLE: Supersonic nozzle

Air flows steadily through a supersonic nozzle. The entering air has negligible velocity. If the exiting air has a velocity of $467 \mathrm{~m} / \mathrm{s}$, find the exit temperature. Assume air is an ideal gas with variable specific heats.

