Example: Open system review problem

$0.016 \mathrm{~kg} / \mathrm{s}$ of R-134a is compressed from 140 kPa and $-10^{\circ} \mathrm{C}(h=260 \mathrm{~kJ} / \mathrm{kg})$ to 1 MPa in a steady state compressor. The refrigerant is then passed through a heat exchanger in which it is cooled at constant pressure to $50^{\circ} \mathrm{C}$. Water enters the other side of the heat exchanger at $20^{\circ} \mathrm{C}$ and 100 kPa and leaves at $30^{\circ} \mathrm{C}$ and 100 kPa . If the required
 compressor power is 1.2 kW ,
(a) find the specific enthalpy of the refrigerant leaving the compressor. (Hint, make just the compressor your system.)
(b) Now making the entire heat exchanger your system, find the mass flow rate of water required. (For R-134a at $50^{\circ} \mathrm{C}$ and $1 \mathrm{MPa}, h=280.19 \mathrm{~kJ} / \mathrm{kg}$.)
(c) Could you have found the mass flow rate of water in just one step? How might you do it? Do you think I'm going to ask you to do it? Are we playing that game for Whose Line is it Anyway?
(d) Why did I give you the specific enthalpies of the R-134a?

Example: Closed system review problem

A piston-cylinder contains 1.5 kg of air. Initially, the air is at 150 kPa and $20^{\circ} \mathrm{C}$. The air is compressed in an isobaric process (and that means...) until the volume is $1 \mathrm{~m}^{3}$. Assume that air is an ideal gas with constant specific heats. If the compression is quasistatic,

(a) find the work into the system, in kJ , and
(b) the heat transfer into the system, in kJ.

