EXAMPLE: Piston-cylinder with water

A closed system contains 0.15 kg of water. Initially the water is a saturated vapor at $205^{\circ} \mathrm{C}$. The water is cooled at constant volume until the temperature is $150^{\circ} \mathrm{C}$ and is then compressed at constant temperature until the volume is half the original value.
(a) Sketch the $P-v$ diagram for this two-step process.
(b) Find the work in or out of the steam for each step.
(c) Find the heat transfer in or out of the steam for each step.

EXAMPLE: Mixing chamber

A steady-state mixing chamber operates at a constant pressure of $800 \mathrm{kPa} .4 .52 \mathrm{~kg} / \mathrm{s}$ of compressed liquid water enters at a temperature of $35^{\circ} \mathrm{C}$, while $1 \mathrm{~kg} / \mathrm{s}$ of superheated steam enters at an unknown temperature. Water leaves the device as a saturated
 liquid. Assuming that the process is adiabatic, determine the temperature of the superheated steam.

