Example

A moist-air mixture has a dry-bulb temperature of 85°F and a relative humidity of $\varphi = 60\%$. The total pressure of the mix is 14.7 psia.

(a) If the water vapor existed alone at T_{mix} and V_{mix} , what would its pressure be? I.e., determine the

Partial pressure (or vapor pressure)

(b) For every lbm of dry air, how much water vapor is there? I.e., determine the

Humidity ratio

(e) If you cooled this mix at constant pressure, at what temperature would the water start condensing? I.e., determine the

Dew point temperature

(d) Determine the enthalpy of the mixture per unit mass of dry air. Is this the same as H_{mix}/m_{mix} ?

(e) If the mixture is cooled to T=60°F, how much liquid condenses per lbm of dry air?

EQUILIBRIUM.

$$M_2 - M_1 = 0$$
 $M_2 = M_1$

$$M_1 = M_A + M_{v,1}$$

 $M_2 = M_A + M_{v,2} + M_{w,2}$

$$\implies M_a + M_{v,2} + M_{v,2} = M_a + M_{v,1}$$

$$\frac{M_{W,2}}{M_q} = \omega_1 - \omega_1$$

CAN FIND WZ FROM Prz:

$$\omega_2 = 0.622 \frac{P_{v2}}{P - P_{v2}} = 0.622 \frac{0.2563}{14.7 - 0.2563}$$

(NOTE THAT \$ = 100%)

$$\frac{m_{w,2}}{m_a} = 0.0155 - 0.01105$$

$$= 0.00445$$

YOU SHOULD BE ABLE TO PROVE THAT QUALITY @