EXAMPLE: Now throw in conservation of mass

A moist-air mixture has a dry-bulb temperature of $85^{\circ} \mathrm{F}$ and a relative humidity of $\varphi=60 \%$. The total pressure of the mix is 14.7 psia .
(a) If the water vapor existed alone at T_{mix}-and V_{mix}, what would its pressure be? Ie., determine the

> Partial pressure (or vapor pressure)
(b) For every lam of dry air, how much water vapor is there? Ie., determine the

Humidity ratio

(c) If you cooled this mix at constant pressure, at what temperature would the water start condensing? Ie., determine the

Dew point temperature

(d) Determine the enthalpy of the mixture per unit mass of dry air. Is this the same as $H_{\text {mind }}$ minna $^{\text {? }}$?
(e) If the mixture is cooled to $T=60^{\circ} \mathrm{F}$, how much liquid condenses per Ibm of dry air?

