EXAMPLE: Moles to masses

Combustion air is mixed with methan	e gas before it is	ignited.	The following	<i>mole</i> analysis
of the entering gas is known.				

СН	[4 - 8	%
O_2	- 16	%
N_2	- 76°	%

- (a) Determine the mass analysis of the gas mixture (mass fractions).
- (b) Determine the mass flow rate of the gas mixture if the *molar* flow rate is 2000 kmol/min.
- (c) Determine the apparent molar mass and the apparent ideal gas constant for the gas.
- (d) If the temperature and the pressure of the mix are 25° C and 100 kPa, respectively, find the **partial pressure** of each component.
- (e) Redo (a) through (d) if the analysis given were a *mass* analysis.

(a) Assu	me you have	of mixture	2.	
i				
CH ₄				
CH ₄ O ₂ N ₂				
N ₂				