EXAMPLE: I'm exhausted, so I'm going to cool it

A flow of \dot{n}_1 =2.0 kmol/s of a dry exhaust at T_1 =200°C and P_1 =100 kPa mixes with a stream of pure nitrogen at T_2 =25°C and P_2 =100 kPa in an adiabatic mixing chamber. The molar composition of the dry exhast is 60% nitrogen and 40% carbon dioxide. If the product stream exits the chamber at T_3 =50°C and P_3 =100 kPa, determine

- (a) the molar flow rate of the coolant N_2 stream, \dot{n}_2 , in kmol/s and
- (b) the rate of entropy generation inside the mixing chamber, in kW/K.

Assume all gases behave as ideal gases with variable specific heats.