
EXAMPLE: Oh where does the exergy go?

Consider a heat exchanger and a steam turbine used as a waste heat recovery system. The heat exchanger takes hot combustion gases and uses them to heat steam, which in turn passes through a turbine. The gases can be modeled as air treated as an ideal gas with variable specific heats. The surroundings are at $T_0 = 25^{\circ}$ C and $P_0 = 101$ kPa.

- (a) Find the power (in kW) delivered by the turbine.
- (b) Find the isentropic (adiabatic efficiency) of the turbine.
- (c) For the heat recovery system (heat exchanger and turbine combined) identify
 - 1. where inflows of exergy occur
 - 2. outflows of exergy occur
 - 3. destruction of exergy occur

(d) Using an exergy accounting approach, calculate the necessary information to fill in the following **exergy balance sheet**

Net rate of exergy in:	(100%)
Disposition of exergy:	
Rate of exergy out Power developed	(%)
Water stream	(%)
Rate of exergy destruction	
Heat exchanger	(%)
Turbine	(%)
	(100%)