EXAMPLE: Closed system finite time exergy analysis

A mass of 0.25 kg of air ($\left.c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)$ is contained in a piston cylinder initially at $P_{1}=200 \mathrm{kPa}$ and $T_{1}=$ $35^{\circ} \mathrm{C}$. The air undergoes a two-step process consisting of a constant pressure process until the temperature reaches $175^{\circ} \mathrm{C}$ followed by a constant volume process until the temperature reaches $250^{\circ} \mathrm{C}$. All heat transfer to the air occurs from contact with a thermal reservoir at $T_{R}=300^{\circ} \mathrm{C}$. The surroundings are at 100 kPa and 300 K .

(a) Sketch the two-step process on T-s and $P-v$ diagrams.
(b) Using an energy conservation/entropy accounting approach, find

1. the total useful work out of the air and
2. the maximum possible useful work out of the air.
(c) Repeat (b) using an accounting of exergy approach.
