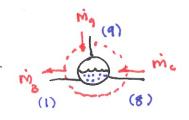

Example


An (almost) ideal Rankine cycle is modified to include reheat and regeneration using an open feedwater heater. The mass flow rate of steam through the boiler is 1.25 kg/s. The boiler operates at 10 MPa, the open feedwater heater operates at 6 MPa, and the condenser operates at 10 kPa. The water enters both pumps as a saturated liquid. The temperature of the steam entering both turbines is 700°C.

- a) Sketch the cycle on a T-s diagram.
- b) Find the power or heat transfer rate in/out of each device. (Hint: Start with an analysis of the open feedwater heater.)
- c) Find the cycle efficiency. (Hint: Careful with W_{dot} and Q_{dot} vs. w_{dot} and q_{dot} .)

(b) OPEN FEED WATER HEATER

CONS. of MASS

$$\frac{d}{dt}(m_{sys}) = \sum \dot{m}_w - \sum \dot{m}_{our}$$

$$0 = \dot{m}_c + \dot{m}_s - \dot{m}_b \qquad (1)$$

CONS. of ENERGY

$$\frac{d}{dt}(\vec{p}_{SYS}) = \vec{Q}_{M,NET} - \vec{W}_{NET,OUT} + \sum \vec{m}(M+...) - \sum \vec{m}_{KT}(M+...)$$

$$0 = \vec{m}_{c}(M_{g}) + \vec{m}_{g}(M_{g}) - \vec{m}_{g}(M_{g})$$

$$(2)$$

$$M_{1} = M(P_{RH}, \chi = 0) = 1213 \quad \text{kJ/kg}$$

$$M_{g} = M(P_{RH}, \Delta = \Delta_{g}) = 3658 \quad \text{kJ/kg}$$

$$\Delta_{3} = \Delta(P_{BOIL}, T = 700^{\circ}) = 7,167 \quad \text{kJ/kg}.$$

$$M_{g} = M(P_{RH}, \Delta = \Delta_{g}) = 197.8 \quad \text{kJ/kg}$$

$$\Delta_{3} = \Delta(P_{CONO}, \chi = 0) = 0.6439 \quad \text{kJ/kg}.$$

$$(1) \neq (2) \quad \text{GIVE} \quad \vec{m}_{c} = 0.9831 \quad \text{kg/s}$$

$$\vec{m}_{g} = 0.3669 \quad \text{kg/s}$$

CONTINUE W/ CONS. of ENERGY & PROPERTY RELATIONS
FOR EACH COMPONENT AROUND CYCLE. RESULTS FOLLOW.

Given

$$P_{cond} = 10 [kPa]$$

$$P_{boil} = 10000 [kPa]$$

$$P_{reheat} = 6000 [kPa]$$

$$T_3 = 700$$

$$\dot{m}_{B} = 1.25 \text{ [kg/s]}$$

Pump 1 energy

$$\dot{W}_{p,1} = \dot{m}_B \cdot [h_2 - h_1]$$

$$h_1 = h [Steam', P = P_{reheat}, x = 0]$$

$$s_1 = s [Steam', P = P_{reheat}, x = 0]$$

$$h_2 = h ['Steam', P = P_{boil}, s = s_1]$$

Boiler energy

$$\dot{Q}_B = \dot{m}_B \cdot [h_3 - h_2]$$

$$h_3 = h ['Steam', T = T_3, P = P_{boil}]$$

$$s_3 = s [Steam', T = T_3, P = P_{boil}]$$

HP Turbine energy

$$\mathring{W}_{HPT} = \mathring{m}_B \cdot [h_3 - h_4]$$

$$h_4 = h [Steam', P = P_{reheat}, s = s_3]$$

Reheater energy

$$\dot{Q}_{reheat} = \dot{m}_C \cdot [h_5 - h_4]$$

$$h_5 = h ['Steam', T = T_3, P = P_{reheat}]$$

LP turbine energy

$$\mathring{W}_{LPT} = \mathring{m}_{C} \cdot [h_5 - h_6]$$

$$s_5 = s [Steam', T = T_3, P = P_{reheat}]$$

$$h_6 = h ['Steam', P = P_{cond}, s = s_5]$$

Condensor energy

$$\dot{Q}_C = \dot{m}_C \cdot [h_6 - h_7]$$

$$h_7 = h ['Steam', P = P_{cond}, x = 0]$$

Pump 2 energy

$$\dot{\mathbf{W}}_{p,2} = \dot{\mathbf{m}}_{C} \cdot [\mathbf{h}_{8} - \mathbf{h}_{7}]$$

$$\mathbf{s}_{7} = \mathbf{s} ['Steam', P = P_{cond}, \mathbf{x} = 0]$$

$$\mathbf{h}_{8} = \mathbf{h} ['Steam', P = P_{reheat}, \mathbf{s} = \mathbf{s}_{7}]$$

Open feedwater heater

Mass

$$0 = \overset{\bullet}{m}_{C} + \overset{\bullet}{m}_{9} - \overset{\bullet}{m}_{B}$$

Energy

$$0 = \mathbf{m}_9 \cdot \mathbf{h}_4 + \mathbf{m}_C \cdot \mathbf{h}_8 - \mathbf{m}_B \cdot \mathbf{h}_1$$

Cycle efficiency. Notice that we use power and rate of heat tranfer (big W and Q, not little w and q) because the mass flow rates are different through different components.

$$\eta = \frac{\mathring{\boldsymbol{W}}_{\mathsf{HPT}} + \mathring{\boldsymbol{W}}_{\mathsf{LPT}} - \mathring{\boldsymbol{W}}_{\mathsf{p},1} - \mathring{\boldsymbol{W}}_{\mathsf{p},2}}{\mathring{\boldsymbol{Q}}_{\mathsf{B}} + \mathring{\boldsymbol{Q}}_{\mathsf{reheat}}}$$

SOLUTION

Unit Settings: SI C kPa kJ mass deg

 $\eta = 0.4581$ $h_2 = 1219 \text{ [kJ/kg]}$ $h_4 = 3658 \text{ [kJ/kg]}$ $h_6 = 2352 \text{ [kJ/kg]}$ $h_8 = 197.9 \text{ [kJ/kg]}$ $\dot{m}_B = 1.25 \text{ [kg/s]}$ $P_{boil} = 10000 \text{ [kPa]}$ $\dot{q}_C = 1908 \text{ [kW]}$ $s_1 = 3.027 \text{ [kJ/kg-K]}$ $s_5 = 7.423 \text{ [kJ/kg-K]}$ $T_3 = 700 \text{ [C]}$ $\dot{W}_{LPT} = 1361 \text{ [kW]}$

h7 = 191.8 [kJ/kg] m9 = 0.3669 [kg/s] mc = 0.8831 [kg/s] Pcond = 10 [kPa] QB = 3313 [kW] Qreheat = 208.2 [kW] s3 = 7.167 [kJ/kg-K] s7 = 0.6493 [kJ/kg-K] Whert = 263.9 [kW] Wp,1 = 6.579 [kW]

 $h_1 = 1213 [kJ/kg]$

 $h_3 = 3869 [kJ/kg]$

 $h_5 = 3894 [kJ/kg]$

No unit problems were detected.