## EXAMPLE: Blowing stuff up

Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ at a fuel flow rate of $1 \mathrm{~kg} / \mathrm{min}$ is burned with dry air with an air fuel ratio of 17:1. Assuming complete combustion and a total pressure of 110 kPa , find
(a) the percent excess air used,
(b) the equivalence ratio,
(c) the percentage of $\mathrm{CO}_{2}$ in the products by volume,
(d) the dew point temperature of the products in ${ }^{\circ} \mathrm{C}$,
(e) the percentage of water vapor condensed if the products are cooled to $20^{\circ} \mathrm{C}$, and
(f) the required volume flow rate of dry air if it if supplied at $22^{\circ} \mathrm{C}$ and 110 kPa .
(g) If the actual air supplied has a humidity ratio of $16 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ per kg of dry air, find the dew point temperature of the products.

