
EXAMPLE: Combustion in a closed system

Let us reconsider the dubious bovine flatulence energy source problem. As before, the proposed process combusts methane (CH₄) with air and produces 90% CO₂, 10% CO and no O₂ in the products. This time, however, the reaction occurs in a **closed system at constant volume**. The methane and the air are at 1 bar and 25°C before the combustion process, producing products at T = 500 K after the reaction. Find the amount of heat transfer out (in kJ) for the process.

i	T [K]	$\Delta \overline{b}_{f}^{0}$ [kJ/kmol]	$\overline{u}(T)$ [kJ/kmol]	$\overline{u}(298 \mathrm{K}) \mathrm{[kJ/kmol]}$
<i>CO</i> ₂) ₂				
<i>CO</i>) ₂				
H ₂ O) ₂				
N2)2				
CH4)1				
<i>O</i> ₂) ₁				
N ₂) ₁				