Example

Let us reconsider the dubious bovine flatulence energy source problem. As before, the proposed process combusts methane (CH₄) with air in a steady-state reaction chamber and produces 90% CO₂, 10% CO and no O₂ in the products. Both the methane and the air enter at 1 bar and 25°C.

This time, however, we will *not* assume that the products leave the chamber at 500 K and 1 bar. Rather, we will assume the chamber operates *adiabatically* and at constant pressure. You are to find the exit temperature of the products. That is, you are to find the

AND SEE IF 0=0. IF NOT, GUESS AGAIN!

* TO GET US IN THE BALL PARK, ASSUME ALL PRPTS ARE No. !

(1) BECOMES

$$0 = (1) \left[-74,890 \frac{ET}{Emol} \right] + (1.95)(0) + (7.33)(0)$$

$$- (0.9) \left[-393,500 + h(T_2) - 9364 \right]$$

$$- (0.1) \left[-110,536 + h(T_2) - 8669 \right]$$

$$- (2) \left[-241,820 + h_{N_1}(T_2) - 9904 \right]$$

$$- (7.332) \left[0 + h_{N_1}(T_2) - 8669 \right]$$

NOW ITERATE AGAIN STATETING WY TO = 2500E, BUT USE REAL PROT. ENTHALPIES. KEEP ITE RATING!

.... Tz=2317K

FOR IST ITERATION,
PRETEND PROPS of No.

i	T[K]	$\Delta ar{b}_f^0$ [kJ/kmol]	$\overline{b}(T)$ [kJ/kmol]	\overline{b} (298K) [kJ/kmol]	\overline{h} [kJ/kmol]
$CO_2)_2$	T22?	-393,520	Aug (Tz)	9364	
$CO)_2$	T2=?	-110,530	True (T2)	8669	
$H_2O)_2$	T2 = ?	-241,820	TINI (T2)	9904	
$N_2)_2$	T2 = ?	0	Fins (T2)	8669	
$CH_4)_1$	298	-74,850	no E	SAME AS	-74, 850
O_2)1	298	0	~	v(0
$N_2)_1$	298	0	~	(*	0

FIRST GUESS ONLY)