
EXAMPLE: Open system mixing

Let us reconsider the dubious bovine flatulence energy source problem yet again. As before, the proposed process combusts methane (CH₄) with air in a steady-state reaction chamber and produces 90% CO_2 , 10% CO and no O_2 in the products. Both the methane and the air enter at 1 bar and 25°C.

This time, however, we will *not* assume that the products leave the chamber at 500 K and 1 bar. Rather, we will assume the chamber operates *adiabatically* and at constant pressure. You are to find the exit temperature of the products. That is, you are to find the

i	T	$oldsymbol{\Delta} \overline{h}_f^{0}$	$\overline{h}(T)$	\bar{b} (298K)	\overline{h}
	[K]	[kJ/kmol]	[kJ/kmol]	[kJ/kmol]	[kJ/kmol]
CO ₂) ₂					
CO)2					
H ₂ O) ₂					
N ₂) ₂					
CH ₄) ₁					
02)1					
N ₂) ₁					