"EXAMPLE: Brayton cycle with regeneration Reconsider the air-standard Brayton cycle from the last example. The following conditions still apply: compressor inlet: 100 kPa, 300 K; turbine inlet: 1 MPa, 1300 K. Now add an ideal regenerator to the system. (a) Find the new heat transfer rate (per unit mass flow rate) into the high pressure heat exchanger and the new cycle efficiency. (b) Find the rate of entropy generation for the regenerator. (c) Repeat (a) and (b) if eta_regen = 0.85." T_1 = 300 [K] P_1 = 100 [kPa] P_3 = 1000 [kPa] T_3 = 1300 [K] "CoE, (1)-->(2)" w_12_in = h_2 - h_1 h_1 = enthalpy(Air,T=T_1) s_1 = entropy(Air,T=T_1,P=P_1) P_2 = P_3 s_2 = s_1 h_2 = enthalpy(Air,P=P_2,s=s_2) T_2 = temperature(Air,P=P_2,s=s_2) "CoE, (x)-->(3)" q_x3_in = h_3 - h_x h_x = enthalpy(Air,T=T_x) T_x = T_4 "CoE, (3)-->(4)" w_34_out = h_3 - h_4 h_3 = enthalpy(Air,T=T_3) s_3 = entropy(Air,T=T_3,P=P_3) P_4 = P_1 s_4 = s_3 h_4 = enthalpy(Air,P=P_4,s=s_4) T_4 = temperature(Air,P=P_4,s=s_4) "CoE, (5)-->(1)" q_51_out = h_5 - h_1 h_5 = enthalpy(Air,T=T_5) T_5 = T_2 "Cycle effficiency" eta = (w_34_out-w_12_in)/q_x3_in