COURSE WORKBOOK: Course learning objectives, notes, and examples

for

ME301
Applications of Thermodynamics

Learning objectives

ME301-APPLICATIONS OF THERMODYNAMICS: Learning objectives

After completing the reading assignments and the associated homework, class exercises, etc., students will be able to

1. Find information about the course via webpage.
2. Use conservation of mass and/or conservation of energy to analyze open, steady-state systems.
3. Use conservation of mass and/ or conservation of energy to analyze closed systems changing over a finite time.
4. Incorporate property relationships for ideal gases with constant specific heats into the above analysis.
5. Find Δu and Δh for ideal gases when specific heats are not constant ((i.e., ideal gases with variable specific heats)
6. Work closed system energy problems incorporating ideal gas properties with variable specific heats
7. Work open system energy problems incorporating ideal gas properties with variable specific heats
8. Find Δs for ideal gases when specific heats are not constant
9. Work closed system entropy problems incorporating ideal gas properties with variable specific heats
10. Work open system entropy problems incorporating ideal gas properties with variable specific heats
11. Use the generalized compressibility chart to estimate properties for gases that do not behave as ideal gases
12. Find the phase of a substance given to independent intensive properties
o Use the saturation tables to help determine the phase of a substance
o State when (based on which phases are present) p and T are independent and when they are not
13. Define the terms
o Saturated liquid
o Saturated vapor
o Quality
14. Given two independent intensive properties of a pure substance, find the value of any other intensive property
15. Perform a linear interpolation on tabulated data in order to estimate values of properties
16. Sketch a \boldsymbol{T}-s diagram for a real substance, showing compressed liquid, superheated vapor and saturated mixture regions, as well as lines of constant pressure
17. Calculate Q and $Q_{d o t}$ for reversible processes using temperature and specific entropy
18. Use isentropic efficiencies to calculate power, kinetic energy changes, etc. for various devices
19. Calculate the maximum amount of work (or power) out of a system, or the minimum required work (or power) into a system

ME301-APPLICATIONS OF THERMODYNAMICS: Learning objectives

20. Calculate the irreversibility (or rate of irreversibility) as the lost work (or power) for a system
21. Define the terms exergy and dead state
22. Explain the interpretation of exergy
23. Calculate the exergy for a system at a known state given the temperature and pressure of the environment
24. Explain the ways in which exergy is transported and destroyed (consumed)
25. Give the interpretation of each term in the accounting of exergy equation
26. Calculate exergy and exergy changes for closed systems
27. Calculate work and useful work for closed systems
28. Calculate lost work (destroyed exergy) for closed systems by using both an accounting of exergy approach and an entropy generation approach (I.e., $T_{0} S_{\text {gen }}$)
29. Calculate exergy inputs and outputs for closed and open systems due to
o mass flow
o heat transfer/heat transfer rates
o work/power
30. Calculate exergy destruction/exergy destruction rates for closed and open systems by using the accounting of exergy equation
31. Create an exergy balance sheet to track the flow/destruction of exergy
32. List major sources of exergy destruction
33. Explain the differences between energy based efficiencies and exergetic efficiencies
34. Calculate exergetic efficiencies for common devices
35. Derive an expression for an exergetic efficiency for a device based on its functionality
36. Identify the components the comprise a vapor power cycle (e.g., a Rankine cycle)
37. Use conservation of energy and appropriate property relations to find the rate of heat transfer and/or the power in or out of each component of the cycle
38. Calculate cycle efficiency
39. Use isentropic efficiencies (aka adiabatic efficiencies) for cycle components
40. Identity trends in cycle efficiency based on T and P for heat addition and heat rejection steps
41. Explain why increasing boiler pressure and boiler temperature usually result in higher cycle efficiencies for vapor power cycles
42. Use conservation of energy and appropriate property relations to find the rate of heat transfer and/or the power in or out of each component of the cycle that includes
o one or more reheaters and/or
o a feedwater heater
43. Give the steps in an ideal Brayton Cycle and draw the corresponding T-s and $P-v$ diagrams.
44. Draw the components (pieces of equipment) that are usually assembled to create a Brayton Cycle
45. Used conservation of energy and the appropriate property relations to calculate the heat transfer and work in/out of each step of a Brayton Cycle as well as to calculate the cycle efficiency
46. Give the general trends in cycle efficiency associated with changing the pressure ratio for a Brayton Cycle.
47. Give two methods by which an ideal Brayton Cycle's efficiency can be increased.
48. Explain the functions of a reheater, an intercooler and a regenerator
49. Used conservation of energy and the appropriate property relations to calculate the rate of heat transfer and/or the power in/out of each step of a Brayton Cycle that includes non-ideal turbines and compressors, reheaters, intercoolers, and regeneration
50. Calculate the cycle efficiency for the above
51. Explain what is meant by ideal regeneration and non-ideal regeneration
52. State the assumptions used for the air standard analysis of a gas power cycle
53. State the assumptions used for the cold air standard analysis of a gas power cycle
54. Give the steps in an ideal Otto Cycle and draw the corresponding $T-s$ and $P-v$ diagrams
55. Used conservation of energy and the appropriate property relations to calculate the heat transfer and work in/out of each step of an Otto cycle as well as to calculate the cycle efficiency
56. Give the general trends in cycle efficiency associated with changing the compression ratio in both an Otto Cycle.
57. Given the steps of a generic, closed-system periodic cycle, use conservation of energy and the appropriate property relations to calculate the heat transfer and work in/ out of each step, as well as to calculate the cycle efficiency
58. Identify the components that comprise an ideal vapor-compression refrigeration cycle
59. Use conservation of energy and appropriate property relations to find the rate of heat transfer and/or the power in or out of each component of the cycle
60. Calculate the coefficient of performance (COP or $\boldsymbol{\beta}$) of an ideal vapor-compression refrigeration cycle
61. Incorporate isentropic efficiencies (aka adiabatic efficiencies) for appropriate cycle components
62. Identity trends in cycle COP based on T and P for heat addition and heat rejection steps
63. Describe the composition of a mixture of gases using both a mass analysis and a mole analysis
64. Calculate the mass composition of a mixture of gases given the mole composition
65. Calculate the mole composition of a mixture of gases given the mass composition
66. Give the underlying assumptions of the Dalton model for gas mixtures

ME301-APPLICATIONS OF THERMODYNAMICS: Learning objectives

67. Define partial pressure

68. Calculate partial pressures of ideal gas mixture components
69. Given the composition of an ideal gas mixture, find average intensive properties such as specific internal energy (u), specific enthalpy (h), specific entropy (s), etc. of the mixture
70. Use the above calculated properties in conservation of energy, accounting of entropy etc.
71. Use conservation of energy, accounting of entropy, and property relations for ideal gases
o to calculate quantities involved in the mixing of gases in closed systems, and
o to calculate quantities involved in the mixing of gases in open systems
72. Define the following terms
o dew point temperature
o vapor pressure
o total pressure
o relative humidity
o humidity ratio
o moist air
o dry air
o saturated air
o mixture enthalpy
73. For a given state of moist air calculate vapor pressure, dew point temperature, humidity ratio, and mixture enthalpy (per unit mass of dry air)
74. Calculate the amount of condensate for a mixture of moist air cooled below its dew point temperature
75. Define the following terms
o Adiabatic saturation temperature
o Wet-bulb temperature
76. Calculate humidity ratio based on dry bulb temperature, adiabatic saturation temperature, and total pressure.
77. Indicate the relative locations of $T_{a s,}, T_{d e n}$, and $T_{d b}$ on a T-v (or T-s) diagram
78. For a known and constant pressure, calculate any of the following properties based on knowledge of two others: $T_{d e m}, T_{d b}, T_{a s,} \omega, \varphi$, and b
79. Sketch a psychrometric chart showing lines of constant $T_{d e n}, T_{d b} T_{a s}, \omega, \varphi, b$ and v
80. Use a psychrometric chart to aid in the above calculations
81. Perform conservation of mass and energy calculations for various processes involving moist air including
o Dehumidification (with or without reheat)
o Humidification
o Evaporative cooling
o Adiabatic mixing
o Analysis of cooling towers
82. Sketch the above processes on a psychrometric chart

ME301-APPLICATIONS OF THERMODYNAMICS: Learning objectives

83. Perform conservation of mass and energy calculations for various processes involving moist air including
o Dehumidification (with or without reheat)
o Humidification
o Evaporative cooling
o Adiabatic mixing
o Analysis of cooling towers
84. Sketch the above processes on a psychrometric chart
85. Define the terms
o Combustion
o Complete combustion
o Incomplete combustion
0 Air-fuel ratio
o Equivalence ratio
o Stoichiometric air
86. Give mole fractions of N_{2} and O_{2} for the most common model of dry air in combustion
87. Balance a complete combustion reaction and calculate the above quantities for the given reaction
88. Define enthalpy of formation
89. Calculate the rate of heat transfer to or from a steady-state steady flow system in which a combustion reaction is taking place
90. Define adiabatic flame temperature
91. Calculate the adiabatic flame temperature for a given combustion reaction
92. Calculate the amount of heat transfer out of a closed system undergoing a combustion reaction at constant volume
93. Define the terms

0 enthalpy of reaction
0 higher heating value
o lower heating value
94. Calculate the amount of heat transfer out of a steady flow reaction chamber for a given combustion reaction given one of the above values
95. Find heating values from enthalpies of reaction or vice versa

Notes, examples, and activities

EXAMPLE: Open system review problem

$0.016 \mathrm{~kg} / \mathrm{s}$ of R-134a is compressed from 140 kPa and $-10^{\circ} \mathrm{C}(h=260 \mathrm{~kJ} / \mathrm{kg})$ to 1 MPa in a steady state compressor. The refrigerant is then passed through a heat exchanger in which it is cooled at constant pressure to $50^{\circ} \mathrm{C}$. Water enters the other side of the heat exchanger at $20^{\circ} \mathrm{C}$ and 100 kPa and leaves at $30^{\circ} \mathrm{C}$ and 100 kPa . If the required
 compressor power is 1.2 kW ,
(a) Find the specific enthalpy of the refrigerant leaving the compressor. (Hint, make just the compressor your system.)
(b) Now making the entire heat exchanger your system, find the mass flow rate of water required. (For R-134a at $50^{\circ} \mathrm{C}$ and $1 \mathrm{MPa}, h=280.19 \mathrm{~kJ} / \mathrm{kg}$.)
(c) Could you have found the mass flow rate of water in just one step? How might you do it? Do you think I'm going to ask you to do it? Are we playing that game for Whose Line is it Anyway?
(d) Why did I give you the specific enthalpies of the R-134a?

EXAMPLE: Closed system review problem

A piston-cylinder contains 1.5 kg of air. Initially, the air is at 150 kPa and $20^{\circ} \mathrm{C}$. The air is compressed in an isobaric process (and that means...) until the volume is $1 \mathrm{~m}^{3}$. Assume that air is an ideal gas with constant specific heats. If the compression is quasistatic,

(a) find the work into the system, in kJ , and
(b) the heat transfer into the system, in kJ .

$\xrightarrow{\text { FOR A GENERAL SYSTEM }}$

Cons. of Mass:
CLOSED SYSTEM

$$
\begin{aligned}
& \frac{d m_{\text {sis }}}{d t}=\sum_{i \omega} \dot{m}-\sum_{\text {out }} \dot{m} \\
& \text { STEADY - STATE OPEN SYS. }
\end{aligned}
$$

Cons. of Energy:

$$
\frac{d E_{\text {sis }}}{d t}=\dot{Q}_{W N}+\dot{W}_{w}+\sum_{i N} \dot{m}\left(h+\frac{V^{2}}{2}+\sigma z\right)-\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+\sigma z\right)
$$

*WOKE OPEC

* the course formerly known as thermo i.

Property stuff

Th. INCOMPEESSIBLE SUBSTANCE WI CONST. C

$$
\begin{aligned}
& \rho=\frac{1}{v}=\text { CONST } \\
& u_{2}-u_{1}= \\
& h_{2}-h_{1}=u_{2}-u_{1}+v\left(P_{2}-P_{1}\right)= \\
& \\
& = \\
& R_{2}-R_{1}=
\end{aligned}
$$

20 IDEAL GAS w/ CONST c_{v}, c_{p}

$$
\begin{aligned}
& P \forall=N R_{4} T \\
& R \equiv R \\
& U_{2}-U_{1}= \\
& h_{2}-h_{1}= \\
& S_{2}-R_{1}= \\
& \\
& =
\end{aligned}
$$

ENTROPY ACCT'ING $2 N D$ LAW STUFF
FOR A GENERAL SYSTEM:

OPEN, STEADY-STATE

FINITE TIME

THE 200

$$
\dot{S}_{\text {gen }}
$$

OTHER USEFUl STUFF

- Boundary work for a closed system:

$$
W_{1 \rightarrow 2}=
$$

- Mass flow rate across a surface

$$
\dot{m}=
$$

- "T $\mathrm{T} d \mathrm{~s}^{9}$ Equations

$$
T d s=\quad T d s=
$$

state postulate

The number of independent，intensive properties needed to fin the state＊of a substance is equal to the number of quasistatic wort modes plus one．
＊State：condition of a system described by the value of its
circular definition：see definition，circular definition，circular：see circular definition
－A \qquad
\qquad HAS ONLY \qquad WORK MODE
－A \qquad
\qquad
\qquad has only \qquad WORK MODE，AND IS \qquad WORK．

THE state postulate for a simple compressible system says that you need．．．

PROPERTES
（TO FIX THE STAT：）

EXAMPLES

$$
\left.\begin{array}{ll}
u=u(&) \\
\Delta=A C, &) \\
h=h(,
\end{array}\right)
$$

WHY IS THIS

For ANMFRMAGO.

$$
u=u(v, T)
$$

$$
d u=-
$$

Joule's Experiment:

(1)

(2)

FROM CONS of ENERGY

$$
U_{2}=U_{2} \quad \& \quad \therefore
$$

$$
\left.\left.d u=\frac{\partial u}{\partial v}\right)_{T} d v+\frac{\partial u}{\partial T}\right)_{v} d T
$$

$$
u_{2}-u_{1}=
$$

* never mix your ideal cias tables!

EXAMPLE: Isobaric process

A piston-cylinder contains 1.5 kg of air. Initially, the air is at 150 kPa and $20^{\circ} \mathrm{C}$. The air is compressed in an isobaric process (and that means...) until the volume is $1 \mathrm{~m}^{3}$. Assume that air is an ideal gas, but do not assume that the specific heats are constant. If the compression is quasistatic,

(a) find the work into the system, in kJ , and
(b) the heat transfer into the system, in kJ.

WHAT ABOUT

$$
h=h(,)
$$

$$
d h=-
$$

 of h :

$$
h \equiv
$$

AND SO FOR AN IDEAL GAS $h=$

$$
d h=
$$

$$
h_{2}-h_{1}=
$$

IF $C_{v}=$ CONS AND $C_{p}=$ CONT $\varepsilon_{\text {皿區 }}$

$$
U_{2}-U_{1}=C_{v}\left(T_{2}-T_{1}\right)
$$

$$
h_{2} \not h_{1}=C_{p}\left(T_{2}-T_{1}\right)
$$

* can you show that $R=C_{p}-c_{v}$?

EXAMPLE: Supersonic nozzle

Air flows steadily through a supersonic nozzle. The entering air has negligible velocity. If the exiting air has a velocity of $467 \mathrm{~m} / \mathrm{s}$, find the exit temperature. Assume air is an ideal gas with variable specific heats.

CONSIDER A CLOSED SYSTEM UNDERGOING A
\qquad PROCESS OVER TIME \qquad

$$
\delta W=
$$

CONSERVATION \& ENERGY

$$
\begin{align*}
& \frac{d}{d t}(E)_{\text {SrO }}=\dot{Q}+\dot{W}+\underbrace{\angle \rightarrow 0} \mathrm{CLOSED} \\
& d= \\
& d= \\
& \text { (1) }
\end{align*}
$$

ACCOUNTINA of ENTROPY

$$
\begin{aligned}
& \frac{d}{d t}(S)_{S Y S}=\sum \frac{\dot{Q}}{T_{b}}+\angle_{0}-L_{0}+\dot{S}_{G E N} \\
& d S= \\
& \therefore \delta Q=
\end{aligned}
$$

SUBSTITUTING INTO (1)

SOLVE FOR T AS

$$
T d /=
$$

THE INT TAR RELATION

FROM DEF'N of h

$$
h \equiv u+p v \quad \therefore \quad d h=
$$

SOLVING FOR du

$$
d u=
$$

SUB into dst TdD relation

$$
\begin{aligned}
& T d B= \\
& T d B=
\end{aligned}
$$

$+P d v$
second Tads relation

TRUE: BUT THESE EQN'S ARE GOOD for any substance and any process!

NOW FOR AN IDEAL LIAS

$$
\begin{aligned}
& d s=\frac{d h}{T}-\underbrace{\frac{v}{T} d P} \\
& = \\
& D_{2}-R_{1}= \\
& \underbrace{}_{14} \\
& 1 I I \\
& D_{2}-D_{1}= \\
& \text { if you use lat Tad/ relations } \\
& R_{2}-R_{1}=\underbrace{\int_{T_{1}}^{T_{2}} C_{v} \frac{d T}{T}}+R \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \begin{aligned}
\text { eFF } \quad C_{c} & =\text { CONSTr } \\
C_{p} & =\text { COST }
\end{aligned} \\
& \beta_{2}-\beta_{1}=C_{p} \ln \left(T_{2} / T_{1}\right) \\
& -R \ln P_{2} / P_{1} \\
& =c_{0} \ln \left(T_{2} T_{1}\right) \\
& 0_{0}+R \ln \left(V_{2} / 0_{1}\right) \\
& \text { *GET IT? Tedious? HA! }
\end{aligned}
$$

EXAMPLE: And now, entropy!

Reconsider the piston-cylinder from the last example. The device contains 1.5 kg of air. Initially, the air is at 150 kPa and $20^{\circ} \mathrm{C}$. The air is compressed in an isobaric process until the volume is $1 \mathrm{~m}^{3}$. Assuming the compression to be quasistatic, you already found
(a) the work into the system, in kJ , and
(b) the heat transfer into the system, in kJ.

Now for something new!
(c) Find the entropy generation for the following systems:
(1) the system shown for $T_{\text {boundary }}=400 \mathrm{~K}$
(2) the system shown for $T_{\text {boundary }}=300 \mathrm{~K}$, and
(3) your original system.

EXAMPLE: What's isentropic efficiency, I wonder?

Air flows steadily through a supersonic nozzle. The entering air has negligible velocity. If the process is reversible and adiabatic, (Everybody sing! That means it's also \qquad
(a) find the exit air temperature, and
(b) the exit velocity.

(c) What do you think the isentropic efficiency of this nozzle is? ${ }^{1}$

IDEALLY GASES ARE IDEAL. What if they aren't?马MTRODUING...

THE COMPRESSIBILITY FACTOR

FOR AN IDEAL LIAS \qquad

Data for non-IDeal behavior well-correlated on

WHERE

$$
\begin{aligned}
& P_{R}=\square< \\
& T_{R} \equiv<\operatorname{TEMPERATURE}^{*}
\end{aligned}
$$

*MORE TO COME.

EXAMPLE: Compressibility factor
3.40 kg of nitrogen is in a steel vessel with a volume of $0.0150 \mathrm{~m}^{3}$. If the temperature is $400^{\circ} \mathrm{C}$, find the pressure
(a) assuming ideal gas behavior, and
(b) using the generalized compressibility charts.
example Condenser

Given:- $\dot{m}_{\text {ref }}$

- Steady state
- T_{1}, P_{1} vapor phase
- T_{2}, P_{2} Liquid phase

Find: \dot{Q} FROM REFRIGERANT TO SURROUNDING AIR
Analysis:

FUN WITH THE P-V-T SURFACE A

FIND THESE SINGLE PHAE REGIONS \triangle

$$
\begin{aligned}
& \text { SOLID } \\
& \text { LIRUD } \\
& \text { VAPOR }
\end{aligned}
$$

FIND THESE TWO-PLASE REGIONS PROFS
LIQUID - VAPOR
LIQUID - SOLID \qquad
\qquad
SOLID - VAPOR \qquad
\qquad

CRITKAL POINT:
TRIPLE LINE:

THE PT DIAGRAM
DRAW The proJection of the p-u-T surface in the pet plane

- WHAT HAPPENED TO THE TWO -PHASE REGONS?
- What does this mean about pet d deng phase. changes?

DRAW THE PROJECTOr OF THE
DEAN THE PROJECTION OF THE
POT T SURFACE IN THE PO PVT SURFACE IN THE THU plane. include the comical DOINT \& LINES of CONSTANT temprruze plane. include the critical POINT E LINES OI CONSTANT pressure.

The PvT surface for a substance which contracts on freezing (not to scale).

INCLUDE

- critical point
- lines of constant temperature
- label phases

THU DIAGRAM

INCLUDE:

- critical point
- lines) a constant pressure
- label phases

Case II: Given P (or T) and v (or u, h, s or x)

(1) Determine the phase of the substance (and hence what set of tables you should consult).
(1a) Go to one of the liquid-vapor Saturation Tables.
(1b) Find the saturated liquid and saturated vapor values for the specific volume : $v_{f(\mathbb{P})}$ and $v_{g(P)}$.
Note: If you are given quality x then you immediately know that it is either a saturated liquid, a saturated liquidvapor mixture, or a saturated vapor and you can go directly to step (2).
(1c) Compare the given value of v against the saturation values to find the phase (and the appropriate table):

$$
\begin{array}{ccc}
v<v_{f(P)} & \text { compressed (subcooled) liquid } \\
v & =v_{f(P)} & \text { saturated liquid } \\
v_{f(P)}<v<v_{g(P)} & \text { saturated liquid-vapor mixture } \\
v & =v_{g(P)} & \text { saturated vapor } \\
v & >v_{g(P)} & \text { superbeated vapor }
\end{array}
$$

(2) Go to the appropriate table and enter the table using the values of \boldsymbol{P} and \boldsymbol{v}. Linear interpolation may be required if values do not match table entries.

Compressed Liquid: $v<v_{f(\mathbb{P})} \quad$ [Quality is undefined.]

- If compressed-liquid approximation is used, let $v_{f(T)}=v$ to find temperature. Then use approximation to find other properties. (Since $v_{f(T)}$ is a very weak function of temperature, this approach is very inaccurate. Much more accurate to look for another property like s or u which is a strong function of temperature.)
Saturated Liquid: $v=v_{f(\mathbb{P})} \quad$ [Quality: $x=0$ or 0%]
- All properties equal to those for a saturated liquid.

Saturated Liquid-Vapor Mixture: $\quad v_{f(P)}<v<v_{g(P)} \quad$ [Quality: $0<x<1$ or $0 \%<x<100 \%$]

- $T=T_{s a(P)}$, the saturation temperature at pressure P
- Calculate quality before finding any other properties: $x=\left(v-v_{f}\right) /\left(v_{g}-v_{f}\right)$
- Then use quality to find other intensive properties, e.g. $u=u_{f}+x\left(u_{g}-u_{f}\right)$

Saturated Vapor: $v=v_{g(P)} \quad$ [Quality: $x=1$ or 100%]

- All properties equal to those for a saturated vapor.

Superheated Vapor: $\quad v>v_{g(P)} \quad$ [Quality is undefined.]

- Enter the superheated vapor table with P and v. Because v often falls between the tabular values, it is often required to linearly interpolate to find the correct temperature which can then be used to find the other values. Sometimes it is necessary to do a double linear interpolation.
Note: If you are given temperature instead of pressure use the same process as above starting with temperature saturation table.

Case I: Given P and T

(1) Determine the phase of the substance (and hence what set of tables you should consult).
(1a) Go to one of the liquid-vapor Saturation Tables.
(1b) Compare the given P and T against the saturation values reported in the table.

In the Pressure Saturation Table, find the saturation temperature at the given pressure, $T_{\text {sat }(P)}$.
if $T>T_{\text {sat }(P)}$ then superbeated vapor
if $T<T_{\text {sat }(P)}$ the compressed (subcooled) liquid

In the Temperature Saturation Table, find the saturation pressure at the give temperature, $P_{\text {sat }(T)}$.
if $P>P_{\text {sat(T) }}$ then compressed (subcooled) liquid
if $P<P_{\text {sat(T) }}$ then superheated vapor

(2) Go to the appropriate single-phase table and enter the table using P and T. If the values of P and T do not coincide with the given values (as usually happens in real applications) you must linearly interpolate within the table to find the desired values.

Note: Compressed Liquid Approximation. If you find the substance is a compressed (subcooled) liquid and you do not have a compressed-liquid table or the pressure is between the saturation value and the lowest value in the compressed-liquid table, you may find it easier (and almost as accurate) to apply the compressed-liquid approximation to estimate the values in the compressed-liquid table using the saturation-table values as follows:

$$
\begin{aligned}
u_{(T, P)} \cong u_{f(T)} \quad[\text { specific internal energy }] \\
v_{(T, P)} \cong v_{f(T)} \quad[\text { specific volume }] \\
s_{(T, P)} \cong s_{f(T)} \quad[\text { specific entropy }] \\
b_{(T, P)} \equiv u+P v \cong u_{f(T)}+P v_{f(T)}=h_{f(T)}+\left\{P-P_{\text {sat }(T)}\right\} v_{f(T)} \quad[\text { specific enthalpy }]
\end{aligned}
$$

Because $h_{(T, P)}=h_{f(T)}$ is only true if $P \cong P_{\text {sat }}$ and the error in using this approximation under conditions where P $\neq P_{\text {sat }}$ depends on the specific problem, it is always more accurate to use the full approximation that includes the pressure correction!

Given: water, $P=10 \mathrm{MPa}, T=350^{\circ} \mathrm{C}$
Find: v (spec. vol.)

Given: water, $P=10 \mathrm{MPa}, T=360^{\circ} \mathrm{C}$
Find: v (spec. vol.)

Given: water, $T=360^{\circ} \mathrm{C}, v=0.003 \mathrm{~m}^{3} / \mathrm{kg}$ Find: P, h

Given: water, $T=20^{\circ} \mathrm{C}, P=10 \mathrm{MPa}$ Find: s (spec. entropy)

Given: water, $T=20^{\circ} \mathrm{C}, P=4 \mathrm{kPa}$
Find: s (spec. entropy)

EXAMPLES: Property Table Practice

Exercise 1-Interpolation:

We have already seen that it is sometimes necessary to linearly interpolate to find values of properties in property tables. In some cases linear interpolation is even more involved, as in the case of finding properties for a superheated vapor in which neither the temperature nor pressure of interest appear as a table entry. As an example, consider the following:

Given: water, $P=2.0 \mathrm{bar}, T=215^{\circ} \mathrm{C}$
Find: v (spec. vol.)

Here we must perform a bi-linear interpolation. This proceeds as follows.

Step 1

Linearly interpolate to find v at $P=1.5$ bar and $T=215^{\circ} \mathrm{C}$. (Ans. $1.491 \mathrm{~m}^{3} / \mathrm{kg}$)

Step 2

Linearly interpolate to find v at $P=3.0$ bar and $T=215^{\circ} \mathrm{C}$. (Ans. $0.740 \mathrm{~m}^{3} / \mathrm{kg}$)

Step 3

Using the results from steps 1 and 2, linearly interpolate to find v at $P=2.0$ bar and $T=215^{\circ} \mathrm{C}$. (Ans. $1.241 \mathrm{~m}^{3} / \mathrm{kg}$)

Exercise 2-Table lookup practice:

Provide the information requested in the table for water. Use the following abbreviations where needed:

- CL - compressed (subcooled) liquid
- SL - saturated liquid
- SM - saturated mixture
- SV - saturated vapor
- SHV - superheated vapor
- NA - not applicable
- INSUF - insufficient information given

State	Phase	Pressure, P $[\mathrm{MPa}]$	Temperature, $T\left[{ }^{\circ} \mathrm{C}\right]$	Specific volume, v $\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	Specific enthalpy,, $[\mathrm{kJ} / \mathrm{kg}]$	Quality, x
1	SV		250			
2			250			0.70
3		3.0	250			
4		3.0		0.02500		
5		3.0	100			
6		3.0			3145.1	

HOMEWORK: Property Table Practice
Student : \qquad

Exercise 3-Table lookup practice:

Exercise 3 is the only deliverable part of this exercise that is to be turned in as homework.
Provide the information requested in the table for refrigerant R134a. Use the following abbreviations where needed:

- CL - compressed (subcooled) liquid
- SL - saturated liquid
- SM - saturated mixture
- SV - saturated vapor
- SHV - superheated vapor
- NA - not applicable
- INSUF - insufficient information given

State	Phase	Pressure, $P[\mathrm{kPa}]$	Temperature, $T\left[{ }^{\circ} \mathrm{C}\right]$	Specific volume,, $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$	Specific internal energy, $[\mathrm{kJ} / \mathrm{kg}]$	Specific enthalp, h $[\mathrm{~kJ} / \mathrm{kg}]$	Specific entropy, s $[\mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}]$	Quality, x
1		240	-12					
2		240				266.85		
3	SL	240						
4		240				150		
5	SV	240						0.4
6			30					
7			30	0.0188				
8			30		90.84			
9	SV		30					
10		1400	30					

CM

EXAMPLE: Piston-cylinder with water

A closed system contains 0.15 kg of water. Initially the water is a saturated vapor at $205^{\circ} \mathrm{C}$. The water is cooled at constant volume until the temperature is $150^{\circ} \mathrm{C}$ and is then compressed at constant temperature until the volume is half the original value.
(a) Sketch the $P-v$ diagram for this two-step process.
(b) Find the work in or out of the steam for each step.
(c) Find the heat transfer in or out of the steam for each step.

EXAMPLE: Mixing chamber

A steady-state mixing chamber operates at a constant pressure of $800 \mathrm{kPa} .4 .52 \mathrm{~kg} / \mathrm{s}$ of compressed liquid water enters at a temperature of $35^{\circ} \mathrm{C}$, while $1 \mathrm{~kg} / \mathrm{s}$ of superheated steam enters at an unknown temperature. Water leaves the device as a saturated
 liquid. Assuming that the process is adiabatic, determine the temperature of the superheated steam.

- NOW REPLACE \qquad with \qquad
ALL THE TRENDS ARE THE v
SAME]
¿ But why do we care?
$\underset{\sim}{\text { ENTROPY ACCOUNTING }} \underset{d}{ } \frac{d}{d t}\left(S_{S+5}\right)=\sum \frac{\dot{Q}_{w}}{T_{D}}+\sum_{i N} \dot{m} s$ $-\sum \dot{m}_{\text {out }}+\dot{S}_{\text {gen }}$

CLOSED SYS, FINITE TIME

PICK SYSTEM SO THAT $T_{b}=T_{\text {SYS }}$
\square

OPEN, SSS SYM, INLET 1 EXT T

PICK SYSTEM SO THAT $T_{b}=T_{\text {SYS }}$
\square

* be sure to label the phases \& show lines of constr. P.

EXAMPLE: Steam turbine

$1.25 \mathrm{~kg} / \mathrm{s}$ of steam flows through a steady state turbine. The steam enters at 1 MPa and $300^{\circ} \mathrm{C}$, and leaves at 100 kPa . If the process is adiabatic and reversible, find the power delivered by the turbine in kW .

(2)

LET'S RE-EXAmine the turbine
in the last example.

WRITE S-Acct ing FOR A REAL (i.e., ADIA BATIC BUT IRREVERSIBLE) TURBINE

$$
\frac{d \dot{S}_{S K}}{d t}=\sum \frac{\dot{2}}{T_{b}}+\sum_{w} \dot{m} s-\sum_{a T} \dot{m} s+\dot{S}_{G E N}
$$

$\beta_{2}=$ incm

$$
\begin{aligned}
& >_{2}<,=\Delta_{2,110 m} \\
& \therefore \quad h_{2, \text { ACTAL }}=h\left(P_{2}, s_{2, \text { ACNAL }} \quad \Delta_{2, \text { vionn }}\right) \\
& >,<,=h_{2, \text { wan }} \\
& \therefore \quad \dot{W}_{a T, A C T}=\dot{m}\left(h_{1}-h_{2, A T M M}\right) \\
& >_{1}<,=\dot{W}_{\text {OUT, IVEAL }}
\end{aligned}
$$

\square
(ZR) SIGNIFIES \qquad
(2) 11 \qquad 11
...... WHY THE DASHED LINE FUR THE ACTUAL TURBINE?

ANS:

Let us define, then

TURBINE

$$
\eta_{T} \equiv \frac{\dot{W}_{a r}}{\dot{W}_{a r, s}}=\frac{\dot{m}\left(h_{1}-h_{2}\right)}{\dot{m}\left(h_{1}-h_{2 s}\right)}+\left\{\begin{array}{c}
1 \\
\text { (2) }
\end{array}\right.
$$

COMPRESSOR

NOZZLE

$$
\eta_{N} \equiv \frac{\Delta K E}{\Delta K E_{3}}=
$$

PUMP

$$
\eta_{p} \equiv
$$

EXAMPLE: Isentropic efficiency (AKA adiabatic efficiency)
$1 \mathrm{~kg} / \mathrm{s}$ of steam flows through a steady-state compressor. The steam enters the compressor at 100 kPa as a saturated vapor. The exit pressure is 1.0 MPa . If the adiabatic efficiency (ding ding ding!) is 80%,
(a) find the power input to the compressor (in kW) and
(b) the temperature of the steam leaving the compressor.

(c) Sketch the process on a T-s diagram. Label the ideal and actual exit state points.

EXAMPLE: Isothermal piston-cylinder

A piston-cylinder device contains 1 kg of water. Initially, the water is at $200^{\circ} \mathrm{C}$ and 1000 kPa . The water is compressed in a reversible isothermal process until the water is a saturated liquid.
(a) Sketch the process on $P-v$ and T-s diagrams.

(b) Find the heat transfer for the process, in kJ.
(c) Find the work for the process, in kJ .

CONSIDER A GENERAL SYSTEM EXCHANGING HEAT \& POWER W/ THE ENVIRONMENT AS WELL AS HEAT TRANSFER W / n RESERVOIRS.

THE BIG QUESTION

¿ HOW BIG CAN WE GET $\dot{W}_{\text {OUT TO TO KEEPING }}$
the heat transfer to/ from reservoirs the same
as the system goes through the same state points?

Cons. of Energy \longrightarrow

Acct. of Entropy \longrightarrow

SOLVE ACCT. \& ENTROPY FOR \dot{Q}_{0} \& SUB INTO ENERGY:

$$
\dot{Q}_{0}=
$$

ENERGY BECOMES

SOLVE FOR $\dot{W}_{\text {out }}$

$$
\begin{aligned}
\dot{W}_{\text {our }}= & -\frac{d}{a t}\left(E_{s y s}-T_{0} S_{s y s}\right)+\sum_{i=1}^{n}\left(1-\frac{T_{0}}{T_{1}}\right) \dot{e}_{i}+\sum_{i n} n i\left(h+\frac{r^{2}}{2}+g z-T_{0} \Delta\right) \\
& -\sum_{a r} \dot{i}\left(h+\frac{v^{2}}{2}+g z-T_{0} \Delta\right)-
\end{aligned}
$$

$\ddot{W}_{a r, \text { max }}$ OCCURS WHEN

$$
\therefore \dot{W}_{\text {our, MAX }}=\dot{W}_{\text {ouT, }}
$$

AND

$$
\dot{W}_{\text {our }}=\dot{W}_{\text {our, }}-
$$

$$
\text { RATE of IRREVERSIBILITY }=\text { ORTH }
$$

EXAMPLE: Isentropic efficiency of a turbine
A turbine with an adiabatic efficiency of $\eta_{T}=0.9$ operates between 8 MPa and 100 kPa with an inlet temperature of $700^{\circ} \mathrm{C}$. The mass flow rate of steam through the turbine is $1.25 \mathrm{~kg} / \mathrm{s}$ and the environment is at $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$.
a) Sketch the process on a T-s diagram.
b) Calculate:

1) the power out of the turbine,
2) the rate of irreversibility in the turbine, and
3) the lost power from the turbine.
c) Calculate the quantity

$$
\varepsilon=\frac{\dot{W}_{\text {out }}}{\dot{W}_{\text {out }}+\dot{W}_{\text {lost }}}
$$

How does this compare to η_{T} ? Explain.

WHAT IS THE MAXIMUM AMOUNT of USEFEUL WORK OUT Of A CLOSED SVSTEM AS it GOES TO EqUILIbRIUM W / THE ENVIRONMENT, EXCHANGING HEAT ONLY WITH THE ENVIRONMENT?

ENVIRONMENT T_{0}, P_{0}
STATE (1) T_{1}, P_{1}
STATE (2) $T_{2}=T_{0}$ $P_{2}=P_{0}$
FROM LAST TIME:

$$
\dot{W}_{\text {out }}=
$$

MEED FINITE TIME

$$
W_{1 \rightarrow 0}=
$$

NOT ALL WORK IS USEFUL. SOME IS WORK DONE THE ATMOSPHERE:

$$
\begin{aligned}
& \therefore W_{A T H}= \\
& \text { so } \\
& W_{1-0, \text { max }}= \\
& = \\
& \text { \#景 Holy Macaroni! THAT'S A } \\
& ! \\
& \text { LETS CALL vT } \\
& \equiv \\
& \left.\begin{array}{l}
U_{0} \\
S_{0}
\end{array}\right] \text { PROPERTIES of } \\
& \text { @ } T_{0}, P_{0}
\end{aligned}
$$

REARRANGING

$$
\begin{aligned}
\underbrace{\frac{d}{d t}\left(A_{s s s}\right)} & =\underbrace{\sum_{i=1}^{n}\left(1-\frac{T_{o}}{T_{i}}\right) \dot{Q}_{i}}_{\mid}-\underbrace{\dot{W}_{\text {curve }}}_{1}+\underbrace{\sum_{w} \dot{m}\left(a_{f}\right)-\sum_{\text {our }} \dot{m} a_{f}}_{\mid} \\
& \left.-T_{0} \dot{S}_{\text {gen }}\right\}
\end{aligned}
$$

EXAMPLE: Useful work and such

Two kg of saturated steam vapor is contained in a piston cylinder at 200 kPa . It undergoes a constant temperature process until the quality is 0.5 . The surroundings are at 101 kPa and 300 K .
(a) Find the work out of the steam for this process.
(b) Find the useful work out of the steam for this process.

(c) What is the maximum amount of useful work that can be extracted from the steam

1. at its initial state?
2. at its final state?
3. between the two states?
(d) How do your answers to (b) and (c) compare? What does that mean?
(e) Calculate the heat transfer in or out of the system and the entropy generation using a good ole ConApps approach. How does $T_{0} S_{g e n}$ compare to part (d)?

EXAMPLE: Closed system finite time exergy analysis

A mass of 0.25 kg of air ($\left.c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)$ is contained in a piston cylinder initially at $P_{1}=200 \mathrm{kPa}$ and $T_{1}=$ $35^{\circ} \mathrm{C}$. The air undergoes a two-step process consisting of a constant pressure process until the temperature reaches $175^{\circ} \mathrm{C}$ followed by a constant volume process until the temperature reaches $250^{\circ} \mathrm{C}$. All heat transfer to the air occurs from contact with a thermal reservoir at $T_{R}=300^{\circ} \mathrm{C}$. The surroundings are at 100 kPa and 300 K .

(a) Sketch the two-step process on T-s and $P-v$ diagrams.
(b) Using an energy conservation/entropy accounting approach, find

1. the total useful work out of the air and
2. the maximum possible useful work out of the air.
(c) Repeat (b) using an accounting of exergy approach.

EXAMPLE: Oh where does the exergy go?

Consider a heat exchanger and a steam turbine used as a waste heat recovery system. The heat exchanger takes hot combustion gases and uses them to heat steam, which in turn passes through a turbine. The gases can be modeled as air treated as an ideal gas with variable specific heats. The surroundings are at $T_{0}=25^{\circ} \mathrm{C}$ and $P_{0}=101 \mathrm{kPa}$.

(a) Find the power (in kW) delivered by the turbine.
(b) Find the isentropic (adiabatic efficiency) of the turbine.
(c) For the heat recovery system (heat exchanger and turbine combined) identify

1. where inflows of exergy occur
\qquad
2. outflows of exergy occur
3. destruction of exergy occur
(d) Using an exergy accounting approach, calculate the necessary information to fill in the following exergy balance sheet
Net rate of exergy in: $\quad(100 \%)$

Disposition of exergy:

- Rate of exergy out

Power developed
($\%$)

Water stream	$\left(\begin{array}{c}\%\end{array}\right)$
• Rate of exergy destruction	$\left(\begin{array}{c}\% \\ \hline \text { Heat exchanger } \\ \\ \hline \text { Turbine } \\ \\ \hline\end{array}\right.$

CONSIDER A FURNACE THAT UTILIZES THERMAL ENERGY FROM A SOURCE AT TEMPERATURE T_{s} AND DELIVERS IT TO A HEATED SAPCE AT T_{u}. THERMAL ENERGY IS LOST AT TI.

WRITE CONSERVATION OF ENERGY FOR THE FURNACE:

USING YOUR RESULTS, DEFINE A FURNACE EFFICIENCY

$$
\eta \equiv \square
$$

NOW WRITE THE ACCOUNTING OF EXERGY FOR THE FURNACE:

USING YOUR RESULTS, DEFINE AN EXERGETIC EFFICIENCY FOR THE FURNACE EFFICIENCY

$$
\varepsilon \equiv
$$

NOW EXPRESS YOUR EXERGETIC EFFICIENCY IN TERMS OF THE FURNACE EFFICIENCY, n

$$
\varepsilon=
$$

PLOT EXERGETIC EFFICIENCY AS A FUNCION OF T_{u} FOR $T_{s}=1200 \mathrm{~K}, 1000 \mathrm{~K}$ AND 800 K . ASSUME $n=1$ AND $T_{0}=300 \mathrm{~K}$.

USING THIS SAME APPROACH, FIND EXPRESSIONS FOR THE EXERGETIC EFFICIENCIES OF THE FOLLOWING COMPONENTS:

TURBINE:

(2)

COMPRESSORS/PUMPS:

HEAT EXCHANGERS:

HEAT EXCHANGERS WITH MIXING:

EXAMPLE: More exergetic efficiencies

Reconsider the waste heat recovery system from a previous example. The heat exchanger takes hot combustion gases and uses them to heat steam, which in turn passes through a turbine. The gases can be modeled as air treated as an ideal gas with variable specific heats. The surroundings are at $T_{0}=25^{\circ} \mathrm{C}$ and $T_{0}=25^{\circ} \mathrm{C}$ and $P_{0}=101 \mathrm{kPa}$.

Based on your previous results,
(a) find the exergetic efficiency of the turbine, ε_{T}.
(b) How does the answer to part (a) compare to η_{T} ? Explain?
(c) find the exergetic efficiency of the heat exchanger, $\varepsilon_{H X R}$.
(d) find the exergetic efficiency of the entire waster heat recovery system, ε.
(e) Does $\varepsilon=\varepsilon_{H X R} \cdot \varepsilon_{T}$? Explain.

Ideal Rankine cycle

Ideal Rankine cycle is an example of a

Four steps

1. Reversible, adiabatic pumping of a saturated liquid from low to high pressure.
2. Constant pressure heat addition until líquid becomes a \qquad .
3. Reversible, adiabatic expansion through a turbine.
4. Constant pressure heat rejection back to state (1).

EXAMPLE: (Almost) ideal Rankine cycle

A Rankine cycle operates with a boiler pressure of 8 MPa and a condenser pressure of 10 kPa . Otherwise the cycle is ideal. The liquid entering the pump is saturated, and the vapor entering the turbine has a temperature of $700^{\circ} \mathrm{C}$. The mass flow rate of steam through the cycle is $1 \mathrm{~kg} / \mathrm{s}$.
a) Sketch the cycle on a T-s diagram.
b) Calculate:

1) the power into the pump,
2) the heat transfer into the boiler,
3) the power out of the turbine, and
4) the heat transfer rejected by the condenser.
c) Find the efficiency of the cycle.

Repeat the last problem, but increase the boiler pressure to 10 MPa .

WHY DID EFFICIENCY INCREASE?

WHAT IS THIS AREA?

(1)

LET US NOW CONSIDER THE ENTROPY ACTING ELM APPLIED TO the boIler. Assume the heat addition comes from COMBUSTION GASES C $T_{\text {GASES }}=800^{\circ} \mathrm{C}$.

FOR THE SYSTEM SHOWN, FIND
a) $\dot{S}_{\text {gm }}(\dot{\sigma})$ FOR

$$
P_{z}=8 \mathrm{MPa}
$$

b) $\dot{S}_{\text {gen }} F O R$

$$
P_{2}=10 \mathrm{MPa}
$$

Repeat the problem again, but this time let the adiabatic efficiencies of the pump and the turbine be 70% and 90%, respectively.
BASK CYCLE

REHEAT

REGENERATION
(3)

An (almost) ideal Rankine cycle is modified to include reheat and regeneration using an open feedwater heater. The mass flow rate of steam through the boiler is $1.25 \mathrm{~kg} / \mathrm{s}$. The boiler operates at 10 MPa , the open feedwater heater operates at 6 MPa , and the condenser operates at 10 kPa . The water enters both pumps as a saturated liquid. The temperature of the steam entering both turbines is $700^{\circ} \mathrm{C}$.
(a) Sketch the cycle on a T-s diagram.

(b) Find the power or heat transfer rate in/out of each device.
(Hint: Start with an analysis of the open feedwater heater.)
(c) Find the cycle efficiency. (Hint: Careful with $W_{\text {dot }}$ and $Q_{d o t}$ vs. $w_{d o t}$ and $q_{\text {dot. }}$.)

THE IDEAL RANKINE CVCLE IS AN EXAMPLE of
\qquad POWER CYCLE
because the

WORKING FLUID \qquad
\qquad .

POWER CYCLES IN WHICH THE WORKING FLUID REMAINS a chs the entire time are called

IDEAL BRAYTON CYCLE

$(1) \rightarrow(2)$
$(2) \longrightarrow(3)$
$(3) \longrightarrow(4)$
(4) $\cdots(1)$

An air-standard Brayton cycle operates under the following conditions: compressor inlet: $100 \mathrm{kPa}, 300 \mathrm{~K}$; turbine inlet, $1 \mathrm{MPa}, 1300 \mathrm{~K}$.
(a) Find the heat transfer rate and power (per unit mass flow rate) for each device in the cycle.
(b) Find the cycle efficiency.
(c) What is the pressure ratio for the cycle?

Reconsider the example from last time. Here are some relevant properties:
(1) $T=300 \mathrm{~K}, P=100 \mathrm{kPa}$
(2) $T=573 \mathrm{~K}, P=1000 \mathrm{kPa}$
(3) $T=1300 \mathrm{~K}, P=1000 \mathrm{kPa}$
(4) $T=726 \mathrm{~K}, P=100 \mathrm{kPa}$

Below is a to-scale T-s diagram. Show the cycle on the diagram.

Using the diagram above, suggest a way you could improve the efficiency of the cycle. (Hints: Write an expression for efficiency, and consider the relative temperatures of the various state points.)

Now draw a number of open steady-state devices connected end-to-end that could accomplish this increase in efficiency. (Hint: You will need one extra open system device not included in the standard Brayton cycle.)

EXAMPLE: Brayton cycle with regeneration

Reconsider the air-standard Brayton cycle from the last example. The following conditions still apply: compressor inlet: $100 \mathrm{kPa}, 300 \mathrm{~K}$; turbine inlet: $1 \mathrm{MPa}, 1300 \mathrm{~K}$. Now add an ideal regenerator to the system.
(a) Find the new heat transfer rate (per unit mass flow rate) into the high pressure heat exchanger and the new cycle efficiency.
(b) Find the rate of entropy generation for the regenerator.
(c) Repeat (a) and (b) if $\eta_{\text {regen }}=0.85$.

WHEN CAN WE USE

REGENERATION?
compare the two brayton cycles below.

(1)
$\eta_{P}=$ (LOW) OR (HIGH)

$\mu_{\text {out }}=(L O W) C R$ (HIGH)

$$
T_{4}>,<,=T_{2}
$$

$$
\begin{aligned}
& \eta_{p}=(\text { LOW }) O R(H \mid G H) \\
& \eta=\text { (LOW) OR (HIGH) } \\
& N_{\text {OUR }}=\text { (LOW OR (HIGH) }
\end{aligned}
$$

$$
T_{4}>,<,=T_{2}
$$

INTERCOOLING

(B)

2

EXAMPLE: Careful with those modifications!

Let's look at that air-standard Brayton cycle again. The following conditions still apply: compressor inlet: $100 \mathrm{kPa}, 300 \mathrm{~K}$; turbine inlet: $1 \mathrm{MPa}, 1300 \mathrm{~K}$. Now add an ideal intercooler and an ideal regenerator. (I.e., $T_{B}=T_{1}$ and $T_{E}=T_{3}$.)
(a) Sketch the T-s diagram.
(b) Find the power (per unit mass flow rate) to the two compressors and the heat transfer rate (per unit mass flow rate) from the intercooler.
(c) Find the power (per unit mass flow rate) from the two turbines and the heat transfer
 rate (per unit mass flow rate) to the reheater.
(d) Find the cycle efficiency. What the heck?

EXAMPLE: Ah-hah! Now we fixed it!

OK, so the efficiency went down. Well, now add an ideal regenerator to the system and let's see what happens!
(a) Sketch the T-s diagram.
(b) Calculate the new heat transfer rate (per unit mass flow rate) into the high-pressure heat exchanger and the new efficiency. Holy cow!

Consider the piston cylinder in your car. Let's consider what really happens as it is operating.

Let's analyze it! But first, some assumptions...

Air Standard Assumptions

1. Working fluid is \qquad
2. and it behaves as an \qquad .
3. The system is \qquad . (We are ignoring intake and exhaust strokes.)
4. Combustion is modeled as an \qquad .
5. All processes are \qquad .

Cold Air Standard Assumptions
Same as air standard assumptions with

Our best first guess at this cycle using these assumptions is the Otto Cycle

Some other definitions:
$r_{c}=1$
$=$ \qquad
\qquad
$\Delta t=$ \qquad
$\forall_{\text {min }}=$ \qquad
(MEP) $\cdot \Delta t=$

Cold air standard
Air standard

EXAMPLE: Cold air-standard Otto cycle

A reciprocating device operating at 6000 rpm is modeled as a cold-air-standard Otto cycle with a compression ratio of 8.5 and a displacement of $0.005 \mathrm{~m}^{3}$. Before the adiabatic compression, the air is at 120 kPa and $40^{\circ} \mathrm{C}$. After the constant volume heat addition, the air is at $950^{\circ} \mathrm{C}$. Use $c_{v}=0.713 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $c_{p}=1.001 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
(a) Sketch the cycle on $P-v$ and T-s diagrams.
(b) Find the heat transfer and work (per unit mass) for each process in $\mathrm{kJ} / \mathrm{kg}$.
(c) Find the net work (per unit mass) and the efficiency of the cycle.
(d) Find the power delivered by the device in kW.

And now the

Draw four piston cylinders representing the four different states of the Diesel Cycle. Leave some space between each drawing. Be sure that you represent the volumes accurately, at least relative to the other volumes.

Now draw arrows representing the heat transfer and/or work into or out of the system between each state.

An air-standard Diesel cycle has a compression ratio of 15. Before the adiabatic compression, the air is at 100 kPa and $20^{\circ} \mathrm{C} .1600 \mathrm{~kJ} / \mathrm{kg}$ of thermal energy is added during the constant pressure heat addition.
(a) Sketch the cycle on $P-v$ and T-s diagrams.
(b) Find the heat transfer and work (per unit mass) for each process in $\mathrm{kJ} / \mathrm{kg}$.
(c) Find cut-off ratio for the cycle.
(d) Find the cycle efficiency. For a cold-air-standard, the cycle efficiency is given by

$$
\eta_{\text {cold-air }}=1-r^{1-k} \frac{r_{c}^{k}-1}{k\left(r_{c}-1\right)} .
$$

How does your value compare to this?

IDEAL VADOR-COMPRESSION REFRIGERATION CYCLES
COMPON EATS

SKETCH THE TBA DIAGRAM

JOULE-THOMPSON COEFFICIENT

$$
\mu_{\partial T} \equiv(-)
$$

FOR A REFRIGERANT
¿CAN YOU USE AN IDEAL

$$
\begin{aligned}
M_{J T} & \stackrel{?}{>} 0 \\
& \stackrel{i}{\dot{ }} 0 \\
& \stackrel{?}{=} 0
\end{aligned}
$$

GAS AS A REFRIGERANT?

EXAMPLE: Ideal vapor-compression refrigeration cycle
An ideal vapor-compression refrigeration cycle use R134a as a working fluid in an air-conditioning system. The refrigerant enters the compressor as a saturated vapor at $40^{\circ} \mathrm{F}$ and leaves the condenser as a saturated liquid at $130^{\circ} \mathrm{F}$. The mass flow rate of the refrigerant is $1.5 \mathrm{lbm} / \mathrm{s}$.
(a) Find the power into the compressor, in B / s.
(b) Find the heat transfer rate out of the condenser, in
 B/s.
(c) Find the heat transfer rate into the evaporator, in B/s.
(d) Find the COP for the cycle.
(e) Find the quality of the refrigerant at the exit of the valve.
(f) Repeat with an isentropic efficiency for the compressor of $\eta_{C}=0.85$.

IDEAL GASES

OBEY

(1)
 (NNCN-IDEAL GAS)

CHOW DO YOU FIND m IF n IS KNOWN?
\square
\qquad
\qquad

- DIVIDE ER. 1 BY M in $\frac{g}{\mathrm{~mol}}$ or $\frac{\mathrm{kg}}{\mathrm{k}-\mathrm{mol}}$ or

$$
\Rightarrow
$$

$$
\Rightarrow
$$

\square
WRITE AS MANY OTHER VERSIONS O THE IDEAL GAS EQUATION AS YOU CAN:
-
-
-
-

MIXTURES of GASES

ANALYSIS	\quad ANALYSIS
$m f_{i}=$	
$y_{i}=$	

$$
\begin{aligned}
& m f_{i}= \\
& y_{i}= \\
& \sum m f_{i}=
\end{aligned}
$$

\qquad
CHOW DO YOU FIND $m_{;}$IF YOU KNOW N_{i} ?

NOW FOR THE MIXTURE...
-OR-
similarly

$$
=\text { DEFINES THE }
$$

\square apparent (average)
ideal gas constant
FuR MIXTURE
(MASS BASIS)

DALTON'S MODEL ASSUMES

- Write eq. 1 for a mixture SOLVE IT FOR P PIX

$$
\begin{equation*}
P_{N / X}= \tag{2}
\end{equation*}
$$

- NOW WRITE ER. 1 FOR CGMPONIENT i \& SOLVE IT FOR P P_{i} using dalton's model.

$$
\begin{equation*}
P_{i}= \tag{3}
\end{equation*}
$$

WRITE A SENTENCE DEFINING PARTIAL PRESSURE!

COMPARE EQ. 3 TO ER.2. HOW does Pi compare to Pa?

$$
P_{i}=
$$

AND:

$$
\sum p_{i}=
$$

EXAMPLE: Moles to masses

Combustion air is mixed with methane gas before it is ignited. The following mole analysis of the entering gas is known.
$\mathrm{CH}_{4}-8$ \%
$\mathrm{O}_{2}-16 \%$
$\mathrm{N}_{2}-76 \%$
(a) Determine the mass analysis of the gas mixture (mass fractions).
(b) Determine the mass flow rate of the gas mixture if the molar flow rate is $2000 \mathrm{kmol} / \mathrm{min}$.
(c) Determine the apparent molar mass and the apparent ideal gas constant for the gas.
(d) If the temperature and the pressure of the mix are $25^{\circ} \mathrm{C}$ and 100 kPa , respectively, find the partial pressure of each component.
(e) Redo (a) through (d) if the analysis given were a mass analysis.
(a) Assume you have \qquad of mixture.

i				
CH_{4}				
O_{2}				
$\mathrm{~N}_{2}$				

EXAMPLE: Properties o' mixtures

Dry atmospheric air is actually a mixture of gases including oxygen, nitrogen, argon and trace amounts of other gases. Consider $1 \mathrm{~m}^{3}$ of air for which the volumetric composition is $21 \% \mathrm{O}_{2}, 78 \% \mathrm{~N}_{2}$ and 1% Ar. Initially the air is at $27^{\circ} \mathrm{C}$ and 100 kPa . It is then heated to $227^{\circ} \mathrm{C}$ at constant volume.
(a) Find the apparent molar mass and the ideal gas constant for the air.
(b) Find the mass of the air.
(c) Assuming variable specific heats,
i. find the heat transfer added to the air during the process, and
ii. calculate the entropy generated during the process, in kJ / K.
(d) Repeat (c) by using the air tables instead of using the given mixture composition.
(a) Assume you have \qquad of mixture

i				
O_{2}				
$\mathrm{~N}_{2}$				
Ar				

EXAMPLE: Open system mixing

Air at $T_{a}=77^{\circ} \mathrm{C}, P_{a}=1$ bar and molar flow rate of $\dot{n}_{a}=0.1 \mathrm{kmol} / \mathrm{s}$ enters an insulated mixing chamber. It mixes with water vapor at $T_{w}=277^{\circ} \mathrm{C}, P_{w}=1 \mathrm{bar}$ and molar flow rate of $\dot{n}_{w}=0.3$ $\mathrm{kmol} / \mathrm{s}$, with the mixture exiting at $P_{m i x}=1$ bar. If both air and water can be modeled as ideal gases with variable specific heats,
(a) find the temperature of the exiting mixture $T_{\text {mix }}$ and
(b) the rate of entropy generation in the mixture.
(c) What is the source of entropy generation?

Psychrometrics is

The gas-vapor combination at which we'll look is \qquad and \qquad .

In water-air mixtures, the water might \qquad . Water is the vapor in our gas-vapor mixture.)

Both the air and the water behave as if they existed at \qquad and \qquad . They obey \qquad 's model.

Sketch a line of constant P_{v} on the $T-v$ diagram below for the water. Then cool it at constant pressure. What happens eventually?

Relative humidity:

Humidity ratio:

Mixture enthalpy:

Mixture specific volume:

EXAMPLE: You must be Psychro!

A moist-air mixture has a dry-bulb temperature of $85^{\circ} \mathrm{F}$ and a relative humidity of $\varphi=$ 60%. The total pressure of the mix is 14.7 psia.
(a) If the water vapor existed alone at $T_{m i x}$ and $\forall_{m i x}$, what would its pressure be? I.e., determine the
(b) For every lbm of dry air, how much water vapor is there? I.e., determine the
(c) If you cooled this mix at constant pressure, at what temperature would the water start condensing? I.e., determine the
\qquad
(d) Determine the enthalpy of the mixture per unit mass of dry air. Is this the same as $H_{m i /} / m_{m i x}$?

EXAMPLE: Now throw in conservation of mass

A moist-air mixture has a dry-bulb temperature of $85^{\circ} \mathrm{F}$ and a relative humidity of $\varphi=60 \%$. The total pressure of the mix is 14.7 psia .
(a) If the water vapor existed alone at T_{mix} and V_{mix}, what would its pressure be? Ie., determine the

> Partial pressure (or vapor pressure)
(b) For every lam of dry air, how much water vapor is there? Ie., determine the

Humidity ratio

(c) If you cooled this mix at constant pressure, at what temperature would the water start condensing? Ie., determine the

Dew point temperature

(d) Determine the enthalpy of the mixture per unit mass of dry air. Is this the same as $H_{\text {mind }}$ maiman $_{\text {man }}$?
(e) If the mixture is cooled to $T=60^{\circ} \mathrm{F}$, how much liquid condenses per Ibm of dry air?

The adiabatic saturation temperature is a useful property of moist air that is solely a function of humidity ratio, total pressure, and dry-bulb temperature. That is
or if you solve for ω,

$$
T_{a s}=T_{a s}\left(_, \quad, \quad-\quad\right)
$$

$$
\omega=\omega\left(_, \quad \text {, } \quad \text {, }\right)
$$

Its utility comes from the fact that adiabatic saturation temperature is well-approximated by \qquad . That is
$T_{a s} \approx$ \qquad

Let's find $\omega=\omega\left(T_{d b}, T_{a s}, P\right)$.

Write Conservation of Mass for the system.

For the air (dyy air) only

And now for the water only

In terms of ω

Write Conservation of Energy for the system.

In terms of ω

Substitute (1) and (2) into (3)

Solve for ω_{1}.

Assume that the (dry) air is an ideal gas with \qquad .

The adiabatic saturation temperature of state (1) is the unique temperature for which \qquad = \qquad = \qquad with $\varphi_{2}=$ \qquad \%.

Write a sentence that defines adiabatic saturation temperature:

For these conditions

$$
\begin{aligned}
& h_{v, 2}= \\
& h_{w, 3}=\square= \\
& h_{v, 1} \approx
\end{aligned}
$$

So

$$
\omega_{1}=
$$

\qquad

where

$$
w_{2}=
$$

\qquad

EXAMPLE: Yet more psych properties

A moist air mixture has the following measured properties

- $T=86^{\circ} \mathrm{F}$
- $T_{w b}=78^{\circ} \mathrm{F}$
- $P=14.7 \mathrm{psia}$
(a) Find the humidity ratio.
(b) Find the relative humidity.
(c) Find the mixture specific enthalpy (per lbm dry air)
(d) Find the mixture specific volume (per lbm dry air)

EXAMPLE: This one is harder than it looks

Moist air at 14.7 psia has the following properties:

- $\omega=0.0031$ (What are the units?)
- $T=70^{\circ} \mathrm{F}$

Find the adiabatic saturation temperature.

Consider the T-s (or T - v) diagram for the water in a moist air mixture. The mois \dagger air has a temperature T_{1} and relative humidity $\varphi_{1}<100 \%$

s

Label these points on the diagram:

1. Line of constant P_{v}
2. P_{g} (if $\varphi=100 \%$)
3. $T_{\text {dew point }}$
4. The adiabatic saturation point. Show $T_{\text {as }}$ and the corresponding vapor pressure

How do T (or $T_{d b}$), $T_{a s}$ (or $T_{w b}$) and $T_{\text {dew }}$ compare when $\varphi=100 \%$?

When $\varphi=100 \%$?

\qquad

Psychrometrics Calculations Comment Card ${ }^{1}$

How would you rate calculating ω if you know $T_{d b}$ and $T_{w b}$?
\square Easy as pie
\square Messy but doableNot a chance!

How would you rate calculating $T_{d b}$ if you know ω and $T_{p b}$?
\square Easy as pieMessy but doableNot a chance!

How would you rate calculating b if you know φ and $T_{d b}$?
\square Easy as pieMessy but doableNot a chance!
How would you rate calculating h if you know ω and $T_{d b}$?
\square Easy as pieMessy but doableNot a chance

How would you rate calculating $T_{p b}$ if you know φ and $T_{d b}$?Messy but doableNot a chance!

How did you hear about these calculations?
\qquad
\qquad
Would you recommend these calculations to a friend? \qquad
\qquad
(If you are interested in learning how to avoid these calculations, please pay attention during the rest of class!)

[^0]

EXAMPLE: Cooling with dehumidification
A steady-flow cooling and dehumidification process with a reheat section delivers moist air at a dry-bulb temperature of $25^{\circ} \mathrm{C}$ and a relative humidity of $\phi=50 \%$. Air enters the cooling section at a dry bulb temperature of $40^{\circ} \mathrm{C}$ and $\phi=40 \%$ with a flow rate of 75 $\mathrm{m}^{3} / \mathrm{min}$.
(a) Draw the process on a psychrometric chart.
(b) Determine the mass flow rate of the dry air in $\mathrm{kg} / \mathrm{min}$.
(c) Determine the amount of liquid water extracted in the process, in $\mathrm{kg} / \mathrm{min}$.
(d) Determine the rate of heat transfer out of the air in the cooling section.

(e) Determine the rate of heat transfer into the air in the reheat section.

EXAMPLE: Heating with humidification
A steady-flow heating and humidification process is used to provide moist air at a dry bulb temperature of $77^{\circ} \mathrm{F}$ with a relative humidity $\phi=45 \%$. Outdoor air at $T_{D B}=40^{\circ} \mathrm{F}$ and $\phi=90 \%$ enters the heating section at a rate of $2100 \mathrm{ft}^{3} / \mathrm{min}$ where the temperature is increased to $75^{\circ} \mathrm{F}$. The air then enters the humidifier section so that the desired exit conditions are achieved. The entire device operates at a constant total pressure of 1 bar.
(a) Draw the two-step process on a psychrometric diagram.
(b) Determine the mass flow rate of dry air through the device.
(c) Determine the heat transfer rate to the heating section.
(d) Determine the mass flow rate of steam in the humidifying section.

(e) Determine the temperature of the steam if it has a pressure of 1.01325 bar.
(a) ${ }^{\text {P- Pressure }=14.7 \text { [psiad }} 1$

Air at a total pressure of 1 atm has a dry bulb temperature of $35^{\circ} \mathrm{C}$ and $\phi=15 \%$ is passed through an evaporative cooler.
(a) Sketch the process on a psychrometric chart.
(b) Determine the minimum dry bulb temperature that could be attained in the process.
(c) If the air leaves the cooler at a dry bulb temperature of $20^{\circ} \mathrm{C}$, find the relative humidity of the air.
(d) If the cross sectional area of the cooler is constant, what happens to the velocity of the air as it passes through? Why? How might you calculate the new velocity?

EXAMPLE: Yes, they use these in nuclear power plants

Warm water enters a cooling tower at $45^{\circ} \mathrm{C}$ at a rate of $130 \mathrm{~kg} / \mathrm{s}$ to be cooled to $30^{\circ} \mathrm{C}$. Atmospheric air at a dry bulb temperature of $25^{\circ} \mathrm{C}$ and $\varphi=50 \%$ enters the tower to effect the cooling, and leaves the tower at a saturated state at $32^{\circ} \mathrm{C}$. Neglecting the power input to the fan, determine
(a) the mass flow rate of dry air into the tower,
(b) the volumetric flow rate of air entering the tower (at 1), and
(c) how much water evaporates in kg / s.

Most commonly

Complete combustion

- Only \qquad and \qquad formed.
- N_{2} is \qquad - \qquad .
- Enough \qquad supplied to convert all \qquad and \qquad to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Model for air
For \qquad air (by volume)

Component	fraction
O_{2}	
$\mathrm{~N}_{2}$	

or
Dalton's other model strikes again!

\qquad

$$
\mathrm{O}_{2}+
$$

\qquad $\mathrm{N}_{2}=$ \qquad Air

Remember $M_{\text {air }}=$ \qquad $\mathrm{kg} / \mathrm{kmol}$

Stoichiometric reaction

- Complete combustion. I.e., no \qquad
- The correct amount of air needed for above is

Air-fuel ratio

$$
A F=
$$

\qquad $=$

$$
F A=
$$

\qquad
\qquad

Equivalence ratio

$$
\begin{aligned}
& \Phi=\ldots \\
& \Phi<\ldots \rightarrow \text { "Lean" } \\
& \Phi>1 \rightarrow{ }^{\prime \prime}
\end{aligned}
$$

Balancing chemical reactions

It's just \qquad !

You remember how to do it from CHEM101, yes?

EXAMPLE: Blowing stuff up

Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ at a fuel flow rate of $1 \mathrm{~kg} / \mathrm{min}$ is burned with dry air with an air fuel ratio of 17:1. Assuming complete combustion and a total pressure of 110 kPa , find
(a) the percent excess air used,
(b) the equivalence ratio,
(c) the percentage of CO_{2} in the products by volume,
(d) the dew point temperature of the products in ${ }^{\circ} \mathrm{C}$,
(e) the percentage of water vapor condensed if the products are cooled to $20^{\circ} \mathrm{C}$, and
(f) the required volume flow rate of dry air if it if supplied at $22^{\circ} \mathrm{C}$ and 110 kPa .
(g) If the actual air supplied has a humidity ratio of $16 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ per kg of dry air, find the dew point temperature of the products.

Consider a combustion reaction happening in a steady-flow reaction chamber:

Write conservation of energy for the process. Will you use a mass-based specific enthalpy or a mole-based specific enthalpy? Why?

Is $d E_{\text {chem }} / d t=0$? If not, how could you assume steady-state?

And now the big question: How are you going to deal with the specific enthalpies given that different stuff leaves than comes in? Is there a specific enthalpy change associated with the chemical reaction?

(Specific) enthalpy of formation:

$$
\bar{h}_{f}^{0}=
$$

Write a sentence that defines enthalpy of formation!

And so for any one species, reactant or product

$$
\bar{h}=
$$

EXAMPLE: Really, this is a thing

In his younger days, Dr. Thom got mixed up with a get-rich-quick scheme that proposed using bovine flatulence as an energy source. The proposed process was to combust methane $\left(\mathrm{CH}_{4}\right)$ with air in a steady-state reaction chamber. The process used sufficient air to produce $90 \% \mathrm{CO}_{2}, 10 \% \mathrm{CO}$ and no O_{2} in the products. Both the methane and the air enter at 1 bar and $25^{\circ} \mathrm{C}$. The products leave the chamber at 500 K and 1 bar. Find the heat transfer rate per unit molar flow rate of fuel for the process.

	$T[\mathrm{~K}]$	$\Delta \bar{b}$ f $[\mathrm{~kJ} / \mathrm{kmol}]$	$\bar{b}(T)$ $[\mathrm{kJ} / \mathrm{kmol}]$	$\bar{b}(298 \mathrm{~K})$ $[\mathrm{kJ} / \mathrm{kmol}]$	\bar{b} $[\mathrm{~kJ} / \mathrm{kmol}]$
$\left.\mathrm{CO}_{2}\right)_{2}$					
$(\mathrm{CO})_{2}$					
$\left.\mathrm{H}_{2}\right)_{2}$					
$\left.\mathrm{~N}_{2}\right)_{2}$					
$\left(\mathrm{CH}_{4}\right)_{1}$					
$\left.\mathrm{O}_{2}\right)_{1}$					
$\left.\mathrm{~N}_{2}\right)_{1}$					

EXAMPLE: Open system mixing

Let us reconsider the dubious bovine flatulence energy source problem yet again. As before, the proposed process combusts methane $\left(\mathrm{CH}_{4}\right)$ with air in a steady-state reaction chamber and produces $90 \% \mathrm{CO}_{2}, 10 \% \mathrm{CO}$ and no O_{2} in the products. Both the methane and the air enter at 1 bar and $25^{\circ} \mathrm{C}$.

This time, however, we will not assume that the products leave the chamber at 500 K and 1 bar. Rather, we will assume the chamber operates adiabatically and at constant pressure. You are to find the exit temperature of the products. That is, you are to find the

T $[\mathrm{KJ}]$	$\Delta \bar{h}_{f}^{0}$ $[\mathrm{~kJ} / \mathrm{kmol}]$	$\bar{h}(T)$ $[\mathrm{kJ} / \mathrm{kmol}]$	$\bar{h}(298 \mathrm{~K})$ $[\mathrm{kJ} / \mathrm{kmol}]$	\bar{b} $[\mathrm{~kJ} / \mathrm{kmol}]$	
$\left(\mathrm{CO}_{2}\right)_{2}$					
$(\mathrm{CO})_{2}$					
$\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}$					
$\left.\mathrm{~N}_{2}\right)_{2}$					
$\left(\mathrm{CH}_{4}\right)_{1}$					
$\left.\mathrm{O}_{2}\right)_{1}$					
$\left.\mathrm{~N}_{2}\right)_{1}$					

EXAMPLE: Combustion in a closed system

Let us reconsider the dubious bovine flatulence energy source problem. As before, the proposed process combusts methane $\left(\mathrm{CH}_{4}\right)$ with air and produces $90 \% \mathrm{CO}_{2}, 10 \% \mathrm{CO}$ and no O_{2} in the products. This time, however, the reaction occurs in a closed system at constant volume. The methane and the air are at 1 bar and $25^{\circ} \mathrm{C}$ before the combustion process, producing products at $T=500 \mathrm{~K}$ after the reaction. Find the amount of heat transfer out (in kJ) for the process.

i	$T[\mathrm{~K}]$	$\Delta \bar{b}_{f}^{0}[\mathrm{~kJ} / \mathrm{kmol}]$	$\bar{u}(T)[\mathrm{kJ} / \mathrm{kmol}]$	$\bar{u}(298 \mathrm{~K})[\mathrm{kJ} / \mathrm{kmol}]$
$\left(\mathrm{CO}_{2}\right)_{2}$				
CO$)_{2}$				
$\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}$				
$\left.\mathrm{~N}_{2}\right)_{2}$				
$\left(\mathrm{H}_{4}\right)_{1}$				
$\left.\mathrm{O}_{2}\right)_{1}$				
$\left.\mathrm{~N}_{2}\right)_{1}$				

If you do this on a per mass basis, you have the

HHV =

LHV =

LHV =

EXAMPLE: Heating values

Reconsider the dubious bovine flatulence problem, but this time assume complete combustion. The enthalpy of reaction for methane is $-802,290 \mathrm{~kJ} / \mathrm{kmol}^{-\mathrm{CH}_{4}}$ at $25^{\circ} \mathrm{C}(298 \mathrm{~K})$ and 1 atm . As before, both the methane and the air enter at 1 bar and $25^{\circ} \mathrm{C}$, and the products leave the chamber at 500 K and 1 atm .
(a) Find the heat transfer rate per unit molar flow rate of fuel for the process.
(b) Find the higher heating value, HHV.
(c) Find the higher heating value, LHV.

[^0]: ${ }^{1}$ When filling out your comment card, please assume that the moist air total pressure is known and constant. ME301 will hold your responses in strict confidence and will not share your identity with any third party.

