HOMEWORK PROBLEMS: Lesson 3

- 3-1 A mass of *m*=0.0948 kg of air is compressed from an initial state of T_1 =25°C and \forall_1 =0.008 m³ to a final state of P_2 =1033 kPa in a process for which $P \forall_{1,2}$ = constant. Assuming variable specific heats, find the following quantities
 - the initial pressure, *P*₁,
 - the final volume, $\frac{1}{V_2}$,
 - the work into the air *W*_{in,12},
 - the heat transfer into the air *Q*_{*in*,12}, and

temperature and the work done per unit mass in kJ/kg.

the change in entropy of the air S₂-S₁.
3-2 Air is compressed in a piston-cylinder device from 100 kPa and 17°C to 800 kPa in a reversible, adiabatic process. Assuming variable specific heats, determine the final

