HOMEWORK PROBLEMS: Lesson 3

3-1 A mass of $m=0.0948 \mathrm{~kg}$ of air is compressed from an initial state of $T_{1}=25^{\circ} \mathrm{C}$ and $\forall_{1}=0.008 \mathrm{~m}^{3}$ to a final state of $P_{2}=1033 \mathrm{kPa}$ in a process for which $P \not \forall^{1.2}=$ constant. Assuming variable specific heats, find the following quantities

- the initial pressure, P_{1},
- the final volume, \forall_{2},
- the work into the air $W_{i n, 12,}$

- the heat transfer into the air $Q_{i n, 12,}$ and
- the change in entropy of the air $S_{2}-S_{1}$.

3-2 Air is compressed in a piston-cylinder device from 100 kPa and $17^{\circ} \mathrm{C}$ to 800 kPa in a reversible, adiabatic process. Assuming variable specific heats, determine the final temperature and the work done per unit mass in $\mathrm{kJ} / \mathrm{kg}$.

