HOMEWORK PROBLEMS: Lesson 2

2-1 A mass of $m=0.0948 \mathrm{~kg}$ of air is compressed from an initial state of $T_{1}=25^{\circ} \mathrm{C}$ and $\forall_{1}=0.008 \mathrm{~m}^{3}$ to a final state of $P_{2}=1033$ kPa in a process for which $P \forall^{1.2}=$ constant. Assuming is an ideal gas with constant specific heats, find the following quantities

- the initial pressure, P_{1},

- the final volume, \forall_{2},
- the work into the air $W_{i n, 12,}$
- the heat transfer into the air $Q_{i n, 12}$, and
- the change in entropy of the air $S_{2}-S_{1}$.

Use $c_{p, \text { air }}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
2-2 Air is compressed in a piston-cylinder device from 100 kPa and $17^{\circ} \mathrm{C}$ to 800 kPa in a reversible, adiabatic process. Assuming is an ideal gas with constant specific heats, determine the final temperature and the work done in $\mathrm{kJ} / \mathrm{kg}$. Use $\mathcal{c}_{p \text {, air }}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

