HOMEWORK PROBLEMS: Lesson 2

2-1 A mass of m=0.0948 kg of air is compressed from an initial state of T_1 =25°C and V_1 =0.008 m³ to a final state of P_2 =1033 kPa in a process for which $PV^{1,2}$ = constant. **Assuming is an ideal gas with constant specific heats**, find the following quantities

- the final volume, $\frac{V_2}{}$,
- the work into the air $W_{in,12}$,
- the heat transfer into the air $Q_{in,12}$, and
- the change in entropy of the air S_2 - S_1 .

Use $c_{p, air} = 1.005 \text{ kJ/kg-K}$ and $R_{air} = 0.287 \text{ kJ/kg-K}$.

2-2 Air is compressed in a piston-cylinder device from 100 kPa and 17°C to 800 kPa in a reversible, adiabatic process. **Assuming is an ideal gas with constant specific heats**, determine the final temperature and the work done in kJ/kg. Use $c_{p, air} = 1.005$ kJ/kg-K and $R_{air} = 0.287$ kJ/kg-K.