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Introduction 
Designing heat transfer systems almost always involves trade-offs, most notably in 
the form of performance versus cost. Increasing the surface area of a fin array, for 
example, will tend to increase the heat transfer rate from it. Increasing the surface 
area of the fin array, however, also increases its expense, and as the fin array 
becomes increasingly large, the resulting expense may become prohibitive. The 
surface area of a fin array above which any increase in area no longer justifies the 
increase in cost represents one example of an economic optimum. 

Adding a fin array to a surface increases the convective heat transfer from the 
surface by increasing the effective area for heat transfer. Another option to increase 
convective heat transfer is to increase the convective heat transfer coefficient h. In 
the case of forced convection this is most easily accomplished by increasing the flow 
rate of the fluid in contact with the surface. Increasing this flow rate, however, also 
involves an added expense, in this case in the form of increased power to a fan or 
pump. We again see the trade off between performance and cost, as well as the 
opportunity to define a economic optimum. 

In the previous examples we saw that increased performance often comes at 
increased cost. However, two different kinds of costs were represented. In the case of 
the fin array, the cost of a larger surface area is a one time, up front cost, the capital 
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cost. In the second example the cost of supplying power to a fan or a pump represents 
an ongoing expense, the operating cost. In some cases only one type of cost is 
significant and an economically optimum design may be simply defined as the one 
that minimizes this cost. Often both types of cost are important, however, and an 
additional trade off exists between capital and operating costs. 

As an example consider a fin array used in conjunction with the forced convection 
of air to achieve a given rate of heat transfer. One possible design consists of a large 
fin array with a low flow rate of air. This design incurs a large capital cost (due to the 
large fins) with a low operating cost (due to the low fan power required). Another 
design may employ relatively small fins with a large flow rate of air. This design has 
a lower capital cost but a larger operating cost. In this case it is not at all clear that 
minimizing either capital or operating costs by themselves constitutes an optimum 
design. Rather, a more sophisticated economic analysis is required in order to define 
“optimum.” 

This paper gives a brief introduction to simple engineering economics and 
outlines its use in optimizing a heat transfer system. Though a specific example is 
used for illustration, the methods employed here are general and can easily be 
extended to other applications. The method makes extensive use of computer 
software as a tool for optimization. Specifically, the software Engineering Equation 
Solver or EES (pronounced “Ease”) is used in the example. The software has been 
developed especially for thermal-fluid engineering applications and offers a 
versatility and ease of solution unavailable with more traditional optimization 
schemes such as linear programming or the method of Lagrangian Multipliers.  

Simple Engineering Economics  
In the previous section we saw that there are two basic types of costs, capital costs 
and operating costs. Capital costs represent the one time expenses usually associated 
with purchasing equipment, facilities, tools and/or land, whereas operating costs are 
ongoing expenses that occur repeatedly. From the perspective of designing a specific 
heat transfer system, the capital cost is how much the system costs to buy or build; 
the operating cost is how much it costs to run. (Operating costs are usually reported 
on a per year basis.) In general, heat transfer systems with large capital costs are less 
expensive to operate than systems with small capital costs. 

Figure 1 shows a graph of possible designs for a given heat transfer objective, 
with capital cost on the vertical axis and operating cost on the horizontal axis. From 
Figure 1 we can see that Design B is better than Design A, as Design B has the same 
operating cost as Design A but has a smaller capital cost. Design C is also a better 
design than A since it offers less expensive operation than A for the same capital cost. 
The dashed line bounding the possible designs on the left and the bottom, then, 
represents a line of best designs. Designs to the left or below this line are impossible 
either due to physical laws or technological feasibility. The goal of economic 
optimization is to guarantee that a design falls along this line. 
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Figure 43.1: Competing effect of capital and operating costs 

Simple payback period 

A number of economic parameters have been suggested to assess the competing 
nature of capital and operational costs. The most elementary parameter is known as 
the simple payback period, or more succinctly as the simple payback (SPB). 
Mathematically, it is given as the derivative of capital cost with respect to annual 
savings: 
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CapdSPB =          (43.1) 

where Cap is capital cost in dollars and Sav is yearly savings in dollars per year. If 
yearly savings Sav is given by a decrease in annual operating cost, then  
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Operd
CapdSPB −= .         (43.2) 

where Oper is annual operating cost. 
The interpretation of SPB as given in (43. 1 is the amount of time in years 

required to recoup a capital investment in the form of savings brought about by a 
decrease in operating cost. Specifically, an additional capital dollar invested to 
improve an existing heat transfer design will be recovered in SPB years. 
Geometrically, SPB is given by the negative of the slope of the best design curve in 
Figure 1. (An SPB for a design not on the best design line is not considered here, as it 
does not represent an optimum.) 

X 

X 

X 

X 

X 

X 

X 

Line of 
best designs 

A 

B 

C 

Possible 
d i  

X 

X 



 
 
 
 
 
 
43.6    Economic Optimization 

Often the simple payback is cited as the time required to recover an entire capital 
investment in a new design over an existing, base design. Here we will refer to such a 
payback as the average simple payback, 

)(
)(

Oper
CapSPBavg ∆

∆
−= .             (43.3) 

The difference between SPB and SPBavg can be seen in Figure 2. Whereas SPB 
represents the instantaneous slope of the best design curve, SPBavg represents only the 
slope of a straight line between two discreet designs falling on the curve. 

Figure 43.2: Simple payback 
 
 

By considering only the simple payback as measured by SPBavg we effectively 
ignore the design possibilities lying along the best design curve as bases of 
comparison. For example, Design C ostensibly has only a slightly longer simple 
payback than Design B as measured by SPBavg. It is in error, however, to assume that 
the additional capital spent on Design C over Design B is recovered in (SPBavg,C - 
SPBavg,B). Rather, we see that SPBC is significantly larger than SPBB, indicating that 
additional capital spent on Design C over Design B takes a much longer period of 
time to recover than suggested by the average simple payback concept. This effect is 
most pronounced at very small operating costs where the best designs line becomes 
quite steep. It is difficult to argue that Design E is a better design than Design D, for 
instance, as additional capital spent on Design E over Design D will almost certainly 

X 

X 

X 

X 

X 

X 

B 

C 

X 

X 

-SPBB 

-SPBC -
 

-
 

Base design 

X 

X D 

E 



 
 
 
 
 
 

Economic Optimization of Heat Transfer Systems    43.7 

never be recovered in the lifetime of the design. This effect may go completely 
unnoticed when considering only SPBavg. 

In short, by defining the simple payback using (43.2) rather than the average 
simple payback of (43.3), we capture an effect not seen in the latter, namely the 
diminished returns encountered with increasingly large capital costs. For this reason, 
in this paper we will consider only simple payback as defined in (43.2). 

Present discounted value and return on investment 

The advantage of using the simple payback period in the economic analysis of heat 
transfer systems lies in its simple conceptual and geometric interpretations. An 
inherent limitation, however, is that SPB does not take into account the time value of 
money. That is, SPB does not take into account the fact that rather than generating 
annual savings, one could make annual payments to interest bearing accounts and 
generate additional new revenue. And so the economic question becomes whether to 
invest capital in new/improved heat transfer equipment in order to generate future 
savings, or simply to invest money annually and earn interest. A parameter called the 
Present Discounted Value makes such a comparison. 

The Present Discounted Value (PDV) is defined by the following equation: 

n

n

ii
iSavPDV
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1)1(

+
−+

=                     (43.4) 

where Sav is yearly savings, i is the annual interest rate and n is the number of years. 
PDV represents the current value of n years worth of future savings (decreases in 
operating costs) taking into account the fact that those savings could be invested at an 
interest rate of i instead. For example, consider a particular capital purchase of $5000 
that is expected to generate $500 of savings per year over the next ten years. One 
may be tempted to claim that capital will be recovered in ten years, as $500 of yearly 
savings over ten years gives 10 years x $500/year = $5000. This is not the case, 
however, as this $5000 of future savings generated over tens years has a present 
value of only 

3072$
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1)1.01(500$ 10
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⋅=PDV                (43.5) 

where we have assumed an annual interest rate of i = 10%. In other words, one could 
invest $3072 today at i = 10% and earn just as money at the end of ten years as if one 
had used $3072 to purchase equipment that generated a $500/year decrease in 
operating costs. This makes the prospect of investing $5000 of capital in equipment 
to generate that same annual savings less attractive indeed. (Even if the time value of 
money were not considered here, we see that ten years of $500 annual savings 
represents only SPBavg and not the more meaningful SPB.) 
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Another way to take into account the time value of money is to compute an 
effective interest rate for a capital cost Cap expected to produce future annual savings 
Sav over n years. This effective interest rate is known as the Return on Investment 
(ROI), and is found by setting Cap equal to PDV and solving the resulting equation 
for the interest rate: 

n
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=                (43.6) 

Although the above equation must be solved numerically, the ROI gives a simple 
comparison of potential future savings to investment returns.  

In our previous example, in which a capital purchase of $5000 is expected to 
generate $500 of savings per year over the next ten years, the ROI for that ten year 
period is 0%. Should the capital investment expected to generate a $500/year savings 
over the next ten years be only $4000, however, (43. 6 gives 
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ROI = 0.043 = 4.3%               (43.8) 

If an interest bearing account can be found with i > 4.3%, then our $4000 might be 
better utilized by generating interest rather than purchasing new equipment. The 
simplicity of this type of comparison has made the Return on Investment perhaps the 
most popular economic parameter. (It should also be noted that ROI can take on 
negative values, indicating we are losing money over time for a particular capital 
expenditure.) 

Numerous other economic parameters exist, but those given here represent three 
of the most commonly used parameters in engineering economics. The question of 
which parameter to use is largely a matter of taste. Luckily, the advent of modern 
software such as EES has made computing these quantities rather painless, and 
several different economic parameters can be calculated from the same general 
analysis. 

Case study: Optimization of a Water-Cooled Condenser Refrigeration 
Unit 
As an example of the economic optimization of heat transfer systems, let us consider 
a case study in which a client of an engineering consulting firm is considering 
upgrading an existing air conditioning system. In particular, the client is interested in 
the economics of purchasing a new compressor/water-cooled condenser unit for an 
existing air-conditioning system. The client has little technical expertise in the area, 
but is familiar with economic terminology. Thus, the deliverable would most likely 
be a summary of economic predictions for the purchase of a new unit. This represents 
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an ideal opportunity to perform an economic analysis with the goal of recommending 
an optimized system.  

One of the first tasks should be defining what constitutes an economic optimum. 
If only capital costs or operating costs, but not both are important, than the optimum 
design is the one which minimizes that cost. If both costs are important, however, 
then there are several ways to define an economic optimum, just as there is more than 
one economic parameter comparing the tradeoffs between capital and operating costs. 

One way to optimize a design is to specify a simple payback period and find the 
best design meeting that criterion. Here the optimization process amounts to finding a 
design that lies along the line of best designs in Figure 1, where the local slope of the 
best design curve represents the negative of the specified SPB. Different specified 
SPBs result in different optimums. For example, the best design would be different 
for a client willing to accept a simple payback period of five years than for one 
willing to accept a simple payback of only three years. A design that maximizes 
Return on Investment represents another economic optimum. In the case study 
considered here, both of these approaches will be considered. 

In order to perform an analysis, the problem definition must first be made more 
rigorous, and a number of modeling assumptions must be made as well. For our 
analysis, we will assume the following: 

 
System requirements 
 The client requires 1 ton (12000 Btu/hr) of cooling. 
 The system uses R134-a as a refrigerant.  
 The R134-a operates at an evaporator temperature of 45oF. 
 
System reliability assumptions 
 Evaporator exit superheating should be kept at 10oF. 
 Condenser exit subcooling should be kept at 10oF. 
 The hot to cold fluid temperature difference in any heat exchanger should be 

no less than 5oF. 
 
Compressor modeling assumptions: 
 Isentropic efficiency is 65%. 
 Purchase cost is approximately $800/horsepower. 
 Operating cost is based on local utility rates at approximately $0.07/kW-hour. 

Condenser modeling assumptions 
 The condenser is water-cooled with a purchase cost of approximately 

$0.70/UA, where UA is in W/oC 
 Operating costs for condensers are based on providing city water at a cost of 

approximately $3.25/100 ft3. This includes sewer fee. 
 City water is available at a temperature of 65oF. 
 Fluid streams experience negligible pressure losses. 
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Other information 
 Evaporator fluid streams experience negligible pressure losses. 
 The existing system has an annual operating cost of $2380. 

This set of assumptions physically constrains some but not all of the system 
parameters. Choosing the remaining system parameter(s) in such a way that the 
additional constraint of a specified SPB or a maximized ROI is achieved is the heart 
of the optimization process. 

The preceding assumptions regarding the capital costs and operating costs of the 
equipment are subject to frequent change and therefore possibly the most spurious of 
the modeling assumptions. It should be kept in mind that any model is better than 
none, however; furthermore, the versatility of a software model allows these figures 
to be easily changed should more reliable data become available. 

Let us begin our analysis be analyzing the refrigerant side of the system only. A 
schematic of the basic vapor refrigeration cycle is shown in Figure 3. 

 

Figure 43.3: Schematic diagram of the refrigerant side of the system 

 

Conservation of energy applied to evaporator yields 
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)( 41134 hhmQ arevap −=                  (43.9) 

The heat transfer rate into the evaporator is fixed at one ton via the problem 
statement. The exit enthalpy h1 is fixed by the refrigerant exit pressure and 
temperature, which is 10oF higher than the evaporation temperature of 45oF. Both the 
flow rate of refrigerant and the inlet enthalpy are unknown as of yet. 

Conservation of energy for an isentropic compressor yields 

)( 12134 hhmW sars −=             (43.10) 

where h2s is the enthalpy of the refrigerant corresponding to condenser pressure and 
the compressor inlet entropy. Conservation of energy for the actual compressor is 
given by 

)( 12134 hhmW ar −=  .               (43.11) 

The isentropic compressor efficiency relates the isentropic compressor power to the 
actual power. 

s
C W

W



=η           (43.12) 

Conservation of energy applied to condenser and throttling valve give, 
respectively 

)( 32134 hhmQ arcond −=                  (43.13) 

h4 = h3.                  (43.14) 

The enthalpy h3 is calculated at the condenser exit pressure and temperature, which is 
10oF cooler than the condensing temperature. 

Examination of the above equations will show that once a condensing temperature 
or pressure is chosen, all other property information can be found, and the resulting 
equations solved. This represents one degree of freedom in the cycle. Equivalently, 
assigning a value to the compression ratio, the ratio of the exit compressor pressure to 
the inlet compressor pressure, completes the equation set: 

evap

cond
C P

P
r =             (43.15) 

At this point let us examine the use of the Engineering Equation Solver software 
(EES) in the solution of the above equation set. It is not the intent here to give a 
detailed tutorial of EES, but rather to outline its major features and its utility in 
performing economic optimization. The two main features of EES include the ability 
to solve large numbers of simultaneous non-linear algebraic equations, and the ability 
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to include thermodynamic and/or transport property look ups as part of the equation 
set. The interface is very intuitive, and once the syntax for writing a property look up 
in equation form is learned, a novice can literally start using the software in minutes. 

Equations are entered into EES by typing them in the Equations window. A
property function call has the following general form: 

Variable = Property(Substance, Prop1 = [value], Prop2 =
[value])

where Property is the desired property, Substance, is the substance name, and
Prop1 and Prop2 are independent properties needed to fix the state for the desired
property. For example, in order to calculate the value of h1 we would type 

h_1 = enthalpy(R134a, T=55, P=54.8) 

The values of the supplied independent properties may be unknowns themselves, as 
is the case the enthalpy at state point 3: 

h_3 = enthalpy(R134a, T=T_3, P=P_cond) 

This ability to couple unknown property information with the governing equations 
gives EES both it’s versatility and power. 

Figure 4 shows a screen shot of the above equation set typed into the 
Equations window of EES. The reader will notice that the compression ratio rC 

has been arbitrarily set to 3. 
Once a compete equation set has been entered into the Equations window,

choosing the Solve command from the Calculate menu will solve the equation
set and list the results in the Solutions window. Figure 5 shows the solution to the 
above equation set. 

Parametric trends are easily examined by changing values in the Equations 
window and recalculating. In our case, different values of the compression ratio can 
be set in the Equations window and its effect on the rest of the cycle assessed.
The process can be streamlined by making use of the Parametric Table feature 
of EES. In this process, equations assigning values to parameters of interest are 
removed from the equations window and their values assigned to individual runs in a 
Parametric Table. The user then chooses Solve Table from the
Calculate menu, at which point EES solves all the equations in the Equations 
window, using the assigned values of the parameter in the table as the remaining 
equation for each run. Figure 43.6 shows the results of this process for our examples 
with compression ratios ranging from two to seven. Any number of parameters can 
be assigned in the Parametric Table in this fashion.
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Figure 43.4: The EES Equations window 

 

Examination of the table in Figure 43.6 shows that larger compression ratios 
always mean larger compressor sizes. This translates into both larger capital and 
operating costs for the compressor, which may lead one to believe that the optimum 
system is the one that utilizes the smallest possible compressor. However, we have 
yet to add the more detailed analysis of the water-cooled condenser. Larger 
compression ratios lead to larger condenser inlet refrigerant temperatures (T2). As the 
inlet water temperature of the condenser is set at 65oF, larger refrigerant-to-water 
fluid temperature differences result within the condenser, and therefore, a smaller 
required heat transfer surface area is required for the condenser heat exchanger. 
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Figure 43.5: The EES Solution window 

 

Thus, larger compressors mean smaller condensers. In economic terms, more capital 
invested in a compressor results in less capital invested in the condenser, and vice 
versa. 
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Figure 43.6: The EES Parametric Table window 

It is unclear as to how changing compression ratio affects water flowrate within 
the condenser. Condensers with smaller surface areas may require larger flowrates of 
water to accomplish the same heat transfer rate, thereby increasing operating costs. 
And since the rate of heat transfer within the condenser increases with compression 
ratio, this effect may be exacerbated. On the other hand, the larger refrigerant to 
water temperature difference at large rC may require smaller water flowrates. We see, 
then, that the trade-offs between capital and operating costs for the system become 
quite difficult to intuit. The use of software such as EES for modeling the system thus 
becomes indispensable in discerning these trends. 

Figure 43.7 shows a schematic drawing of the condenser heat exchanger, modeled 
here as a simple counter-flow type. Figure 8 gives a temperature-area diagram of the 
same heat exchanger. Three distinct regions can be inferred from Figure 43.8, 
corresponding to those regions of the heat exchanger in which the refrigerant is de-
superheated, condensed, and then subcooled.  
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Figure 43.7: Schematic diagram of the water-cooled condenser 

 

 
Figure 8: Variation of fluid temperatures within the condenser heat exchanger 

 

An energy balance on the superheated region of the condenser gives 

)()( ,,,2134 shwatoutwatwatpwatgarsh TTcmhhmQ −=−=           (43.16) 

The UA for the superheated section is related to the heat transfer rate by 
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The analogous equations for the condensing and subcooled regions, respectively, are 

)()( ,,,134 scwatshwatwatpwatfgarsat TTcmhhmQ −=−=                    (43.18) 
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)()( ,,,3134 inwatscwatwatpwatfarsc TTcmhhmQ −=−=            (43.20) 
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The total UA for the entire heat exchanger is simply the sum of the UAs for the 
separate regions 

UA = UAsh + UAsat + UAsc             (43.22) 

Figure 8 shows that the minimum temperature difference between the refrigerant 
and the water most likely occurs as the refrigerant enters the condensing region of the 
heat exchanger. The problem statement requires that this difference by no less than 
5oF. Thus, 

Twat,sh = Tcond – 5oF                (43.23) 

The operating cost of the condenser is governed by the required volumetric flow 
rate of water. This is easily found from knowledge of the water mass flow rate, 

∀=  ρwatm      (43.24) 

where ρ and ∀  are the density and volumetric flow rate of water, respectively. 
Once a compression ratio is chosen, the previous refrigerant side analysis fixes T2. 

Equations 14-22 can then be solved to size the condenser heat exchanger. In other 
words, equations 14-22 can be added to our previous analysis with the resulting 
degrees of freedom remaining at one, that being the compression ratio rC. 

To find the economic optimum, the cost data must also be included. Per our 
modeling assumptions, the capital cost of the system is governed by the purchase of a 
compressor and condenser, and is given by the equations 



 
 
 
 
 
 
43.18    Economic Optimization 

hp
$800⋅= compcomp WCap              (43.25) 

CW/
$70.0 o⋅=UACapcond                (43.26) 

where compW  is in horsepower and UA is in W/oC. The operating cost of the system is 
governed by the same two pieces of equipment, and is given by 

hrkW
$07.0

year
days210

−
⋅⋅= compcomp WOper           (43.27) 

3ft
$0325.0

year
days210 ⋅⋅∀= 

condOper            (43.28) 

where we have assumed operation of the unit for 210 days per year. (Care must be 
taken in handling the units in the above two equations. EES facilitates this as well by 
inclusion of a unit conversion function call.) 

Figures 43.9 and 43.10 show the Equations window for the complete equation 
set outlined above. By using the Parametric Table feature for various values of 
rC, the overall system capital and operating costs are calculated as a function of rC. 
Figures 43.11 and 43.12 show the results of this analysis. (The figures were created 
using the graphing capabilities in EES.) 
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Figure 43.9: Case study equation set within EES Equations window 
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Figure 43.10: Case study equation set within EES Equations window (continued) 
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Figure 43.11: System capital costs 

 
Figure 43.12: System operating costs 
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Figures 43.11 and 43.12 show that increased compression ratio indeed has the 
opposite effect on the costs of the compressor and the condenser. As compression 
ratio increases, both the capital and operating costs of the compressor steadily rise, 
whereas both costs decrease for the condenser. Figures 11 and 12 also show that the 
total capital cost and the total operating cost for the system occur at very different 
compression ratios of approximately 2 and 4.5, respectively. As previously stated, in 
a case where only capital or operating costs, but not both, are important, this analysis 
alone is sufficient to determine the best design. In our example, if the salvage value 
of the existing system is significant, capital costs may not be important. Thus the best 
design would be the one that minimizes total operating cost at a compression ratio of 
two. 

For the case in which both of these costs are important, let us first determine the 
optimum system by optimizing for a specified SPB. To find this optimum, the 
following figure of merit (FOM) is minimized 

FOM = Cap + SPB∙Oper           (43.29) 

The rationale for minimizing this term is seen by taking the first derivative of FOM 
with respect to Oper and setting it equal to zero. 

0
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=+= SPB
Operd
Capd

Operd
FOMd

        (43.30) 

Solving for SPB we find  

)(
)(

Operd
CapdSPB −=                (43.31) 

identically, as it should be. The interpretation of FOM is the total cost of a design for 
a period of time equal to the simple payback, including both capital and operating 
costs. By minimizing this cost, we ensure that our design falls along the line of best 
designs in Figure 1.  

Adding (43.29) for FOM to our equation set and setting SPB = 4 years generated 
the numbers used to create Fig. 43.13. From Figure 43.13 we see that the best design 
for a simple payback of four years corresponds to a compression ratio of 
approximately 3.65. This process can be repeated for a range of simple paybacks, 
which would allow the client choose the optimum design for the SPB they are willing 
to accept. Such an analysis is presented in Figure 43.14. For our case, it is interesting 
to note that the compression ratio for the best system varies only slightly for a wide 
range of SPB.  
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Figure 43.13: Determination of best system size for SPB = 4 years 

 
Figure 43.14: Size of best system for given simple payback period 
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Optimizing for a specified SPB allows for the competing effects of capital and 
operating costs to be taken into account, but neglects the time value of money. By 
defining the optimum design as the one that maximizes the ROI both effects are 
considered. In our example this is accomplished by including the defining equation 
for ROI , (43. 6, in our equation set. Here the savings is given by the decrease in 
annual operating costs for the proposed design over the existing system. 

Sav = $2083 – Oper                (43.32) 

Figure 15 shows the ROI over a four year period as a function of rC. The optimum 
system using this criterion occurs at a compression ratio of just under three, with a 
ROI reaching close to 100%. As interest bearing accounts do not have interest rates 
anywhere close to this value, this represents a very attractive design indeed. 

 

 
Figure 43.15: Return on investment analysis results 

 

At this point in our case study, we can either remain satisfied with our analysis or 
add more detail as needed. For example, rather than treating the condenser heat 
exchanger as something of a “black box” for which a required UA value was 
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calculated but no physical dimensions, the individual convective heat transfer 
coefficients (the hs) could be calculated for specific heat exchanger types and 
geometries. This would undoubtedly give us a more accurate estimate of both the 
capital cost and operating cost of the condenser. Pressure drops within the fluids may 
also be considered. Whether or not we should spend the extra time and effort in this 
more detailed analysis, of course, should be dictated by the time and budget restraints 
of the project itself. 

Even without an extremely detailed model of the system, however, we can easily 
distinguish the major trends involved. It is clear, for example, that the economically 
optimum system, however it is defined, should have a compression ratio between 
three and four. Furthermore, we see from Figure 11 that the capital cost of the 
compressor dominates the other costs in this range of compression ratios. Therefore, 
we may want to spend more time in a future analysis exploring the effect of 
compressor isentropic efficiency on system performance rather than the more tedious 
heat exchanger analysis of the condenser. 

Conclusion 
We have introduced simple engineering economic parameters as a way of assessing 
the competing costs associated with the design of heat transfer systems. Through a 
case study, we have coupled the physical governing equations of a particular heat 
transfer system with these parameters in order to assess the economic trends, defining 
a economic optimum as the best design for a specified simple payback, or one that 
maximizes return on investment. In the process, we made extensive use of the 
Engineering Equation Solver software (EES), as its versatility and functionality 
makes it especially suited for such applications. The methods outlined in this 
example are easily extended to a very large variety of heat transfer systems. 

 



 
 
 
 
 
 
43.26    Economic Optimization 

Nomenclature 
Cap capital cost, $ 
cP specific heat, B/lbm Fo 

h enthalpy, B/lbm 
i interest rate 
n number of years 
Oper operating cost, $/year 
PDV present discounted value, $ 
Q rate of heat transfer, B/hour 
P pressure, psia 
rC compression ratio 
ROI return on investment 
Sav annual savings, $/year 
SPB simple payback, years 
UA heat exchanger combined heat transfer coefficient, B/hour Fo 

∀  volumetric flowrate, gpm 
W  power, B/hour 

Greek 

ρ density, lbm/ft3 

η efficiency 

Subscripts 

cond  condenser 
evap evaporator 
f saturated liquid 
g saturated vapor 
r134a refrigerant R134a 
s isentropic 
sat saturated 
sc subcooled 
sh superheated 
wat water 
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