ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

ME301 – T	hermodynamics II				Fall 2012-2013
Section:	$\square 01 (6^{th} hour)$ $\square 02 (7^{th} hour)$			Name	
				СМ	
		Exa	am 3		
		Nov	2, 2012		
		Problem 1	/ 40	0	
		Problem 2 Problem 3	/ 30		

Show all work for full credit.

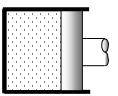
100

Total

Open book, computer use for computational purposes, one 8 1/2 x 11" handwritten equation sheet.

If you use tabular data from your text, do **not** interpolate values. Use the nearest value in the table(s).

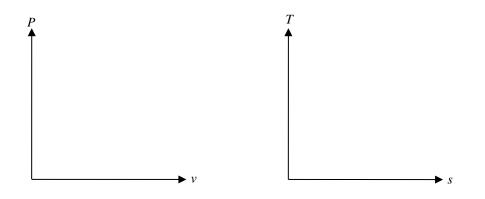
Problem 1 (40 pts)


A Dr. Thom Simple Cycle (DTS cycle) is a closed-system/periodic cycle consisting of only three steps as follows:

 $(1) \rightarrow (2)$ Constant volume heat addition

(2) \rightarrow (3) Reversible, adiabatic expansion

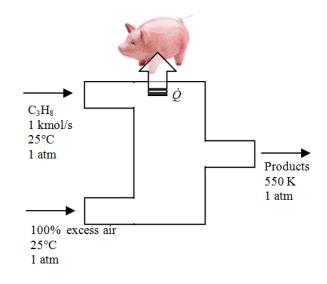
(3) \rightarrow (1) Constant pressure heat rejection


A particular DTS cycle is to be modeled using the **air standard** assumptions. The air at the beginning of the heat addition is $P_1 = 90$ kPa and $T_1 = 310$ K. After the heat addition the pressure is $P_2 = 531.4$ kPa The heat rejected in process (3) \rightarrow (1) is $q_{out,31} = 456.6$ kJ/kg.

This information is summarized in the table below. (You do not need to fill in all values in the table.)

State	T[K]	P [kPa]	u [kJ/kg]	h [kJ/kg]	𝕫 [kJ/kg∙K]	P_r	v_r			
1	310	90	221.25	310.24	1.73498	1.5546	572.3			
2		531.4								
3										
$q_{out,31} = 456.6 \text{ kJ/kg}$										

(a) Sketch the P-v and T-s diagrams for a DTS cycle.



- (b) Find the heat transfer and work per unit mass for each step in the given cycle (in kJ/kg). Assume an airstandard cycle (R = 0.287 kJ/kg-K.)
- (c) Find the cycle efficiency.
- (d) If the cycle is to produce a net work output of 400 kJ, what mass of air is required?

Problem 2 (30 pts)

Hank Hill has fired up his propane (C_3H_8) grill for a Texas style BBQ. (He did not invite Dr. Thom, however, as he refused to cook veggie burgers on *his* propane grill.) Hank's grill is modeled as a steady state, steady flow reaction chamber as shown in the figure. Assuming that the fuel is supplied with 100% excess air,

- (a) find the balanced chemical reaction equation and
- (b) the rate of heat transfer (in kW) supplied to the BBQ.

Problem 3 (30 Points)

(a)

- i. (3 pts) True / False Compression ratio is given by $r = v_{max}/v_{min}$ ii. (3 pts) True / False Compression ratio is given by $r = P_{max}/P_{min}$
- (b) (6 pts) Define adiabatic flame temperature.

(c) (10 pts) 1 k-mol of methane (CH₄) is combusted with theoretical air. The products of combustion are at a pressure of 100 kPa. The balanced reaction is given below.

$$CH_4 + 2[O_2 + 3.76N_2] \rightarrow CO_2 + 2H_2O + 7.52N_2$$

If the products are at $T = 40^{\circ}$ C, how many k-mols of water are in the liquid phase? (Assume 40° C < T_{dew})

Answer only one of the next two questions.

(d) (8 pts) Prove that for a closed system undergoing a constant pressure process the heat transfer is given by

$$Q_{12} = m(h_2 - h_1)$$

(e) (8 pts) Prove that for an isentropic process of an ideal gas with constant specific heats the pressure and temperature are related by

$$(P_2/P_1) = (T_2/T_1)^{k/(k-1)}$$

(Hints: $R = c_p - c_v, k = c_p/c_v$)