Name

ME301 - Applications of Thermodynamics

Circle section: 01 [10 am, Lui] 02 [11 am, Lui] 03 [10 am, Thom] 04 [11 am, Thom] 05 [11 am, Danesh]

Exam 2
Oct 27, 2022

Rules:

- Closed book/notes exam.
- Help sheets allowed. (Two 8-1/2 $\times 11$ " sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (from your textbook) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1 Problem 2	/ 50
	/ 50
Total	/100

PROBLEM 2 [50 points]

A closed-system/ periodic cycle using water as its working fluid can be modeled as consisting of the following three steps:
(1) \rightarrow (2) Constant-volume heat addition
(2) \rightarrow (3) Constant-temperature expansion (3) \rightarrow (1) Constant-pressure heat rejection

State	$T\left[{ }^{\circ} \mathrm{C}\right]$	P [kPa]	$v\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$u[\mathrm{~kJ} / \mathrm{kg}$]	X
1		80			0.40
2					
3					NA

	$q_{\text {in }}[\mathrm{k} / \mathrm{kg}]$	$W_{\text {in }}[\mathrm{kJ} / \mathrm{kg}$]
$1 \rightarrow 2$	450	
$2 \rightarrow 3$		-1000
$3 \rightarrow 1$	Don't calculate	

(a) The T-s diagram for the cycle is shown. Draw the $P-v$ diagram relative to the two-phase dome with properly labeled isotherms.
(b) Find the unknown values of heat transfer per unit mass, $q_{A \rightarrow B}$, and the work per unit mass, $w_{A \rightarrow B}$ for each process in the cycle.
(c) Find the cycle efficiency.

PROBLEM 2 [50 points]

A flow of $\dot{n}_{1}=2.0 \mathrm{kmol} / \mathrm{s}$ of a dry exhaust at $T_{1}=200^{\circ} \mathrm{C}$ and $P_{1}=100$ kPa mixes with a stream of pure nitrogen at $T_{2}=25^{\circ} \mathrm{C}$ and $P_{2}=100$ kPa in an adiabatic mixing chamber. The molar composition of the dry exhast is 60% nitrogen and 40% carbon dioxide. If the product stream exits the chamber at $T_{3}=50^{\circ} \mathrm{C}$ and $P_{3}=100 \mathrm{kPa}$,
 determine
(a) the molar flow rate of the coolant N_{2} stream, \dot{n}_{2}, in $\mathrm{kmol} / \mathrm{s}$ and
(b) the rate of entropy generation inside the mixing chamber, in kW / K.

Assume all gases behave as ideal gases with variable specific heats.

Extra work for Problem

Extra work for Problem

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
1 slug $=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences

$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

```
Volume
    \(1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}\)
    \(=264.17 \mathrm{gal}\)
    \(1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}\)
    \(1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}\)
```


Volumetric Flow Rate

$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}$
$=448.83 \mathrm{gal} / \mathrm{min}$

Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

Pressure

$$
\begin{aligned}
& 1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar} \\
&=14.696 \mathrm{lbf} / \mathrm{in}^{2} \\
& 1 \mathrm{bar}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa} \\
& 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa} \\
& 1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2} ; \\
& {\left[\mathrm{lbf} / \mathrm{in}^{2}=" \mathrm{psi}{ }^{\prime \prime}\right] }
\end{aligned}
$$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~Pa} \mathrm{~m}^{3}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$ 1 Btu $=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$ $1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$

$$
=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}
$$

$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$
$=0.70679 \mathrm{Btu} / \mathrm{s}$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

