$\overline{\mathbf{C M}}$

ROSE-HULMAN
INSITIUTE OF TECHNOLOGY

Name

ME301 - Applications of Ther-
 modynamics

Circle section:	$\mathbf{0 1}\left[3{ }^{\text {rd }}\right.$ Mertz $]$	$\mathbf{0 2}\left[33^{\text {rd }}\right.$ Thom $]$
	$03\left[4^{\text {th }}\right.$ Thom $]$	$\mathbf{0 4}\left[3{ }^{\text {rd }}\right.$ Cloutier $]$
	$\mathbf{0 5}\left[4^{\text {th }}\right.$ Cloutier $]$	

Exam 2
Oct 31, 2019

Rules:

- Closed book/notes exam.
- Two help sheets allowed. (8-1/2 $\times 11^{\prime \prime}$ sheets of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1	/ 26
	/ 38
Problem 3	/ 36
Total	/ 100

PROBLEM 1 [26 points]

(a) True | False For a thermodynamic cycle, $w_{\text {net, out }}=q_{\text {net,in }}$.

True | False A power cycle is always oriented counterclockwise on a $p-v$ diagram.
True | False For the components comprising an ideal gas mixture, the mole fractions and mass fractions are related by $m f_{i}=y_{i} M_{i}$.
True | False $\quad w_{\text {net,out }}>0$ for a refrigeration cycle.
True | False Increasing the boiler pressure in a Rankine cycle tends to increase the cycle's thermal efficiency.
True | False The throttling process in a refrigeration cycle is internally reversible.
True | False A refrigeration cycle is always oriented clockwise on a T-s diagram.
True | False By Dalton's Model, each component of an ideal gas mixture behaves as an ideal gas as if it were alone at the temperature and volume of the mixture.
True | False For an ideal gas, specific volume is a function of temperature only, v=v(T).
(b) An ideal vapor-compression refrigeration cycle operates with a heat transfer rate out of the condenser of $\dot{Q}_{\text {out }}=105 \mathrm{~kW}$ and a heat transfer rate into the evaporator of $\dot{Q}_{\text {in }}=83 \mathrm{~kW}$. Find the coefficient of performance (COP) assuming:
i. the cycle functions as a refrigerator.
ii. the cycle functions as a heat pump.

PROBLEM 2 [38 points]

A closed-system/periodic cycle consists of the following processes:
(1) \rightarrow (2) Reversible, adiabatic compression (2) \rightarrow (3) Constant pressure heat addition (3) \rightarrow (4) Reversible, adiabatic expansion (4) \rightarrow (1) Constant volume heat rejection

The cycle operates with a compression ratio of $r=v_{1} / v_{2}=18.2$. Other state information and some energy transfers are given in the tables. Assume an air-

 standard cycle with $R_{a}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

State	$T[\mathrm{~K}]$	P [kPa]	$h[\mathrm{~kJ} / \mathrm{kg}]$	$u[\mathrm{kj} / \mathrm{kg}]$	$s^{\circ}[\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}]$	Pr	V_{r}
1	380	100	380.77	271.69	1.94	3.176	343.4
2							
3	1900		2127.40	1581.81	3.735	1655	3.295
4	-----	235.9	929.16	671.25	2.843	73.03	34.77

(a) Find the temperature and pressure at state (2), T_{2} and P_{2}.
(b) Find the unknown values of heat transfer per unit mass, $q_{A \rightarrow B}$, and the work per unit mass, $w_{A \rightarrow B}$ for the cycle.
(c) Find the cycle efficiency.

PROBLEM 2 [cont'd]

(1) \rightarrow (2) Reversible, adiabatic compression $(2) \rightarrow$ (3) Constant pressure heat addition
(3) \rightarrow (4) Reversible, adiabatic expansion
(4) \rightarrow (1) Constant volume heat rejection

	$q_{\text {in }}[\mathrm{kJ} / \mathrm{kg}]$	$w_{\text {in }}[\mathrm{kJ} / \mathrm{kg}]$
$1 \rightarrow 2$?	?
$2 \rightarrow 3$	966.33	?
$3 \rightarrow 4$	0	-910.56
$4 \rightarrow 1$	-399.6	0

State	T [K]	P [kPa]	h [k]/kg]	u [k]/kg]	$s^{\circ}[\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}]$	P_{r}	V_{r}
1	380	100	380.77	271.69	1.94	3.176	343.4
2							
3	1900		2127.40	1581.81	3.735	1655	3.295
4	896	235.9	929.16	671.25	2.843	73.03	34.77

PROBLEM 2 [cont'd]

Problem 3 [36 points]

An adiabatic turbine has a stream of nitrogen and a stream of oxygen both at a temperature of 800 K and a pressure of 1.0 MPa entering the turbine. The nitrogen has a molar flow rate of $\dot{n}_{N_{2}}=0.08 \mathrm{kmol} / \mathrm{s}$ and the oxygen has a molar flow rate of $\dot{n}_{O_{2}}=0.02 \mathrm{kmol} / \mathrm{s}$. The exit of the turbine is a mixture of the inlet gasses at a pressure of 30 kPa at a temperature of 300 K .

Assuming ideal gas behavior with variable specific heats, find the rate of entropy generation in the turbine in kW / K.

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
1 slug $=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences

$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$

$$
=264.17 \mathrm{gal}
$$

$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$

Volumetric Flow Rate

$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}$
$=448.83 \mathrm{gal} / \mathrm{min}$

Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

$$
=14.696 \mathrm{lbf} / \mathrm{in}^{2}
$$

$1 \mathrm{bar}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~Pa} \mathrm{~m}^{3}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
1 Btu $=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$

$$
=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}
$$

$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$

$$
=0.70679 \mathrm{Btu} / \mathrm{s}
$$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

Other useful information	S	USCS
Universal Ideal Gas Constant: \bar{R}	$=8.314 \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$	$=1545(\mathrm{ft}-\mathrm{lbf}) /(\mathrm{lbmol}-\mathrm{R})$
		$=1.986 \mathrm{Btu} /(\mathrm{lbmol}-\mathrm{R})$
Acceleration of Gravity: g	$=9.810 \mathrm{~m} / \mathrm{s}^{2}$	$=32.174 \mathrm{ft} / \mathrm{s}^{2}$

