ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

ME301 – Applications of Thermodynamics

Circle section:	01 [3rd Me
	03 [4 th The
	05 [4th C]c

 01 [3rd Mertz]
 02 [3rd Thom]

 03 [4th Thom]
 04 [3rd Cloutier]

 05 [4th Cloutier]
 04

Exam 2

Oct 31, 2019

Rules:

- Closed book/notes exam.
- Two help sheets allowed. (8-1/2 x 11" sheets of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

СМ

Name

PROBLEM 1 [26 points]

(a) True False	For a thermodynamic cycle, $w_{net,out} = q_{net,in}$.
True False	A power cycle is always oriented counterclockwise on a p - v diagram.
True False	For the components comprising an ideal gas mixture, the mole fractions and
	mass fractions are related by $mf_i = y_i M_i$.
True False	$w_{\text{net,out}} > 0$ for a refrigeration cycle.
True False	Increasing the boiler pressure in a Rankine cycle tends to increase the cycle's
	thermal efficiency.
True False	The throttling process in a refrigeration cycle is internally reversible.
True False	A refrigeration cycle is always oriented clockwise on a T -s diagram.
True False	By Dalton's Model, each component of an ideal gas mixture behaves as an ideal
	gas as if it were alone at the temperature and volume of the mixture.
True False	For an ideal gas, specific volume is a function of temperature only, $v = v(T)$.

- (b) An ideal vapor-compression refrigeration cycle operates with a heat transfer rate out of the condenser of $\dot{Q}_{out} = 105$ kW and a heat transfer rate into the evaporator of $\dot{Q}_{in} = 83$ kW. Find the coefficient of performance (COP) assuming:
 - i. the cycle functions as a refrigerator.

ii. the cycle functions as a heat pump.

PROBLEM 2 [38 points]

A closed-system/periodic cycle consists of the following processes:

- (1) \rightarrow (2) Reversible, adiabatic compression
- (2) \rightarrow (3) Constant pressure heat addition
- (3) \rightarrow (4) Reversible, adiabatic expansion
- (4) \rightarrow (1) Constant volume heat rejection

The cycle operates with a compression ratio of $r=v_1/v_2=18.2$. Other state information and some energy transfers are given in the tables. **Assume an airstandard cycle** with $R_a=0.287$ kJ/kg-K.

(You do not need to fill in all property values.)

	(1)	
~		
(4)		(2)
	_	
K	(3)	

State	T[K]	P[kPa]	<i>h</i> [kJ/kg]	<i>u</i> [kJ/kg]	<i>s</i> ⁰ [kJ/kg·K]	P_r	Vr
1	380	100	380.77	271.69	1.94	3.176	343.4
2							
3	1900		2127.40	1581.81	3.735	1655	3.295
4	896	235.9	929.16	671.25	2.843	73.03	34.77

	<i>q</i> _{in} [kJ/kg]	$w_{\rm in}[{\rm kJ/kg}]$
1→2	?	?
2 → 3	966.33	?
3 → 4	0	-910.56
4→1	-399.6	0

- (a) Find the temperature and pressure at state (2), T_2 and P_2 .
- (b) Find the unknown values of <u>heat transfer per unit mass</u>, $q_{A \rightarrow B}$, and the <u>work per unit mass</u>, $w_{A \rightarrow B}$ for the cycle.
- (c) Find the <u>cycle efficiency</u>.

PROBLEM 2 [cont'd]

- (1) \rightarrow (2) Reversible, adiabatic compression
- (2) \rightarrow (3) Constant pressure heat addition
- (3) \rightarrow (4) Reversible, adiabatic expansion
- (4) \rightarrow (1) Constant volume heat rejection

	<i>q</i> _{in} [kJ/kg]	$w_{\rm in}[{\rm kJ/kg}]$
1→2	?	?
2 → 3	966.33	?
3→4	0	-910.56
4→1	-399.6	0

(You do not need to fill in all property values.)

State	<i>T</i> [K]	<i>P</i> [kPa]	<i>h</i> [kJ/kg]	<i>u</i> [kJ/kg]	<i>s</i> ⁰ [kJ/kg⋅K]	P_r	Vr
1	380	100	380.77	271.69	1.94	3.176	343.4
2							
3	1900		2127.40	1581.81	3.735	1655	3.295
4	896	235.9	929.16	671.25	2.843	73.03	34.77

PROBLEM 2 [cont'd]

Problem 3 [36 points]

An adiabatic turbine has a stream of nitrogen and a stream of oxygen both at a temperature of 800 K and a pressure of 1.0 MPa entering the turbine. The nitrogen has a molar flow rate of $\dot{n}_{N_2} = 0.08$ kmol/s and the oxygen has a molar flow rate of $\dot{n}_{O_2} = 0.02$ kmol/s. The exit of the turbine is a mixture of the inlet gasses at a pressure of 30 kPa at a temperature of 300 K.

Assuming ideal gas behavior with variable specific heats, find the <u>rate of entropy generation</u> in the turbine in kW/K.

<u>Length</u>

1 ft = 12 in = 0.3048 m = 1/3 yd 1 m = 100 cm = 1000 mm = 39.37 in = 3.2808 ft 1 mile = 5280 ft = 1609.3 m

Mass

1 kg = 1000 g = 2.2046 lbm 1 lbm = 16 oz = 0.45359 kg 1 slug = 32.174 lbm

Temperature Values

 $(T/K) = (T/^{\circ}R) / 1.8$ $(T/K) = (T/^{\circ}C) + 273.15$ $(T/^{\circ}C) = [(T/^{\circ}F) - 32]/1.8$ $(T/^{\circ}R) = 1.8(T/K)$ $(T/^{\circ}R) = (T/^{\circ}F) + 459.67$ $(T/^{\circ}F) = 1.8(T/^{\circ}C) + 32$

Temperature Differences

 $(\Delta T/^{\circ} R) = 1.8(\Delta T/K)$ $(\Delta T/^{\circ} R) = (\Delta T/^{\circ} F)$ $(\Delta T/K) = (\Delta T/^{\circ} C)$

<u>Volume</u>

 $1 m^{3} = 1000 L = 10^{6} cm^{3} = 10^{6} mL = 35.315 ft^{3}$ = 264.17 gal $1 ft^{3} = 1728 in^{3} = 7.4805 gal = 0.028317 m^{3}$ $1 gal = 0.13368 ft^{3} = 0.0037854 m^{3}$

Volumetric Flow Rate

1 m³/s = 35.315 ft³/s = 264.17 gal/s 1 ft³/s = 1.6990 m³/min = 7.4805 gal/s = 448.83 gal/min

Force

 $1 N = 1 kg m/s^{2} = 0.22481 lbf$ $1 lbf = 1 slug ft/s^{2} = 32.174 lbm ft/s^{2}$ = 4.4482 N

<u>Pressure</u>

1 atm = 101.325 kPa = 1.01325 bar = 14.696 lbf/in² 1 bar = 100 kPa = 10⁵ Pa 1 Pa = 1 N/m² = 10⁻³ kPa 1 lbf/in² = 6.8947 kPa = 6894.7 N/m²; [lbf/in² = "psi"]

Energy

1 J = 1 N m = 1 Pa m³ 1 kJ = 1000 J = 737.56 ft ·lbf = 0.94782 Btu 1 Btu = 1.0551 kJ = 778.17 ft ·lbf 1 ft ·lbf = 1.3558 J

Energy Transfer Rate

1 kW = 1 kJ/s = 737.56 ft ·lbf/s = 1.3410 hp = 0.94782 Btu/s 1 Btu/s = 1.0551 kW = 1.4149 hp = 778.17 ft ·lbf/s 1 hp = 550 ft ·lbf/s = 0.74571 kW = 0.70679 Btu/s

Specific Energy

1 kJ/kg = 1000 m²/s² 1 Btu/lbm = 25037 ft²/s² 1 ft·lbf /lbm = 32.174 ft²/s²

Other useful information	SI	USCS
Universal Ideal Gas Constant: \bar{R}	= 8.314 kJ/(kmol-K)	= 1545 (ft-lbf)/(lbmol-R)
		= 1.986 Btu/(lbmol-R)
Acceleration of Gravity: g	$= 9.810 \text{ m/s}^2$	= 32.174 ft/s ²