## Name

## ME301 - Applications of Thermodynamics

| Circle section: | $\mathbf{0 1}\left[6^{\text {th }}\right.$ Cloutier $]$ | $\mathbf{0 2}$ [5 $5^{\text {th }}$ Thom] $]$ |
| :--- | :--- | :--- |
|  | $\mathbf{0 3}\left[6^{\text {th }}\right.$ Thom $]$ | $\mathbf{0 4}\left[55^{\text {th }}\right.$ Lui $]$ |
|  | $\mathbf{0 5}\left[6^{\text {th }}\right.$ Lui $]$ |  |

Exam 2
Oct 25, 2018

## Rules:

- Closed book/notes exam.
- Two help sheets allowed. (8-1/2 x 11" sheet of paper, one side each, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.


## Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

| Problem 1 | / 24 |
| :---: | :---: |
| Problem 2 | / 32 |
| Problem 3 | / 44 |
| Total | /100 |

## Problem 1 [24 points]

(a) [6 pts] Two steam turbines with isentropic (adiabatic) efficiencies of $\eta_{A}=1$ and $\eta_{B}=0.85$ are considered for use in the same Rankine cycle. How would the various quantities compare for the two turbines?
i. Outlet specific entropies of the turbines

- $s_{\text {out }, B}<s_{\text {out }, A}$
- $s_{\text {out }, B}=s_{\text {out }, A}$
- $s_{\text {out }, B}>s_{\text {out }, A}$
ii. Outlet specific enthalpies of the turbines
- $h_{o u t, B}<h_{\text {out }, A}$
- $h_{\text {out }, B}=h_{\text {out }, A}$
- $h_{\text {out }, B}>h_{\text {out }, A}$
iii. Outlet pressures of the turbines
- $P_{\text {out }, B}<P_{\text {out }, A}$
- $P_{\text {out }, B}=P_{\text {out }, A}$
- $P_{\text {out }, B}>P_{\text {out }, A}$
(b) [12 pts] A mixture of fuel and oxygen is modeled as having the following molar composition: $34 \% \mathrm{CH}_{4}\left(M_{\mathrm{CH} 4}=16.04\right)$ and $66 \% \mathrm{O}_{2}\left(\mathrm{MO}_{\mathrm{O}}=32\right)$. Find the mass fraction of each component and the apparent (average) molar mass of the mixture.
(c) [6 pts] In a cold air standard Brayton cycle, the exit temperature of the air leaving the turbine is $T_{4}=200^{\circ} \mathrm{C}$ and the temperature of the air leaving the compressor is $T_{2}=100^{\circ} \mathrm{C}$.
i. If the cycle makes use of an ideal regenerator, the temperature of the air entering the high pressure heat exchanger will be
- $T_{x}=100^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}<T_{x}<200^{\circ} \mathrm{C}$
- $T_{x}=200^{\circ} \mathrm{C}$
ii. If the cycle makes use of an non-ideal regenerator, the temperature of the air entering the high pressure heat exchanger will be
- $T_{x}=100^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}<T_{x}<200^{\circ} \mathrm{C}$
- $T_{x}=200^{\circ} \mathrm{C}$
iii. If the cycle is instead an air-standard Brayton cycle (not cold air standard), ideal regeneration would result in
- $T_{x}=100^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}<T_{x}<200^{\circ} \mathrm{C}$
- $T_{x}=200^{\circ} \mathrm{C}$


## Problem 2 [32 points]

$1.5 \mathrm{kmol} / \mathrm{s}$ of gaseous oxygen at 350 K and 200 kPa is mixed with $3.5 \mathrm{kmol} / \mathrm{s}$ of gaseous nitrogen at 350 K and 200 kPa . The mixture stream is then throttled to standard room pressure at 100 kPa through a valve.

(a) If the process is adiabatic, determine the mixture temperature at the exit.
(b) Determine the entropy generation rate during the mixing-throttling process, in $\mathrm{kW} / \mathrm{K}$.

Clearly document your solution for full credit.

## Problem 3 [44 points]

A piston-cylinder operates on the Worst-Efficiency-Ever Cycle (WEEC) with steam as the working fluid. The cycle consists of the following three processes:

State (1) to (2): Constant volume heat addition


State (2) to (3): Reversible, adiabatic expansion
State (3) to (1): Constant pressure heat rejection
At the beginning of the heat addition process, 0.1 kg of water exists as a saturated vapor at 100 kPa .
(a) Find the maximum cycle temperature.

| Process | $W(\mathrm{~kJ})$ | $Q(\mathrm{~kJ})$ |
| :---: | :---: | :---: |
| $(1) \rightarrow(2)$ |  | 27.29 |
| $(2) \rightarrow(3)$ |  |  |
| $(3) \rightarrow(1)$ |  |  |

(b) Fill in the table with the work and heat transfer associated with each requested process. (Note: show all work for full credit.)
(c) Calculate the cycle efficiency.



## Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

## Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
1 slug $=32.174 \mathrm{lbm}$

## Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

## Temperature Differences

$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

## Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$ $=264.17 \mathrm{gal}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$

## Volumetric Flow Rate

$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}$
$=448.83 \mathrm{gal} / \mathrm{min}$

## Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

## Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

$$
=14.696 \mathrm{lbf} / \mathrm{in}^{2}
$$

1 bar $=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[ lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

## Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}$
$1 \mathrm{~J}=1 \mathrm{~Pa} \mathrm{~m}^{3}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
$1 \mathrm{Btu}=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

## Energy Transfer Rate

$$
\begin{aligned}
& 1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410 \\
& \mathrm{hp} \quad=0.94782 \mathrm{Btu} / \mathrm{s} \\
& \begin{aligned}
& 1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp} \\
&=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s} \\
& \begin{aligned}
1 \mathrm{hp} & = \\
& 550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW} \\
= & 0.70679 \mathrm{Btu} / \mathrm{s}
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

## Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

| Other useful information | SI | USCS |
| :---: | :--- | :--- |
| Universal Ideal Gas Constant: $\bar{R}=8.314 \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$ | $=1545(\mathrm{ft}-\mathrm{lbf}) /(\mathrm{lbmol}-\mathrm{R})$ |  |
|  |  | $=1.986 \mathrm{Btu} /(\mathrm{lbmol}-\mathrm{R})$ |
| Acceleration of Gravity: $g$ | $=9.810 \mathrm{~m} / \mathrm{s}^{2}$ | $=32.174 \mathrm{ft} / \mathrm{s}^{2}$ |

