CM [1 pt]

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ME301 – Applications of Thermodynamics

Circle	section:

 01 [4th Mech]
 02 [5th Mech]

 03 [4th Thom]
 04 [5th Thom]

 05 [4th Lui]
 04 [5th Thom]

Exam 2

Oct 26, 2017

Rules:

- Closed book/notes exam.
- Two help sheets allowed. (8-1/2 x 11" sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

+1 for CM

Name

PROBLEM 1 [32 points]

(a) [14 pts] Indicate whether each of the following statements is true or false.

- True | False One of the air standard assumptions is to model an open system cycle as a closed system.
- True | False Increasing compression ratio increases the efficiency of an Otto cycle.
- True | False The specific entropy of a fluid exiting a steady-state, adiabatic turbine increases as turbine efficiency increases.
- True | False Heat pump and refrigeration cycles form clockwise plots on a *T*-*s* diagram.
- Power cycles form (heat engines) form clockwise plots on a *P-v* diagram. True | False
- True | False According to Dalton's model, mixtures of ideal gases can also be assumed to be ideal gases.
- True | False Partial pressure is calculated by multiplying mass fraction with total pressure.
- (b) [7 pts] Given the *P*-*v* and *T*-*s* diagrams at the right,
 - i. add state numbers to the P-v diagram that correspond with the states of the *T*-*s* diagram.
 - ii. Show where the new state point 2 would be on each diagram if the compression ratio were increased while keeping the initial volume the same.

- (c) [2 pts] When finding specific entropy changes for one component of an ideal gas mixture, what pressure should you use?
 - Ο Mixture pressure
 - Partial pressure of the component Ο
 - It doesn't matter, either one will always work. 0
 - None of the above specific entropy of an ideal gas is a function of temperature only 0
- (d) [3 pts] Match the component of a refrigeration cycle with the correct description.

n never be :	reversibl
1	never be :

Compressor

le

- ii. relates to refrigeration capacity
- iii. relates to the denominator of the coefficient of performance

Condenser

(e) [6 pts] Compare the *T-s* diagrams of two gas turbine cycles (two Brayton cycles) as shown. Making use of *cold air standard assumptions*, indicate which cycle better fits each description.

PROBLEM 2 [37 points]

A Rankine cycle is modified with reheat as shown in the figure. The flowrate of steam is $\dot{m} = 1.5$ kg/s. The isentropic efficiencies of the pump and low-pressure turbine are $\eta_P = 0.7$ and $\eta_{HPT} = 0.8$, respectively. Other operating conditions are given in the figure, and some property information is given in the table below.

State	Р	Т	x	v	и	h	S
	[kPa]	[°C]		[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]
1		20.0	0.0	0.001018	83.83	83.84	0.2962
2s	8000	20.1		0.001018	83.83	91.83	
2	8000						
3	8000	700		0.0548	3443	3881	7.280
4s	1000			0.2796	2865	3145	
4	1000						7.506
5	1000	700		0.4478	3476	3924	8.274
6s			0.95	55.07	2294	2422	
6				61.55	2429	2573	8.783

(a) Find the <u>inlet pressure to the pump</u> in kPa.

(b) Calculate the <u>power into the pump</u> in kW.

- (c) Calculate the power out of the high-pressure turbine in kW.
- (d) Calculate the <u>rate of heat transfer into the reheat section</u> in kW.
- (e) Calculate the <u>cycle efficiency</u>.
- (f) Calculate the isentropic efficiency of the low-pressure turbine..

Problem 3 [30 points]

Two kilograms of a two-component mixture of 20% of methane (CH₄) and 80% of oxygen (O₂) by mass is compressed **isothermally** in a closed piston cylinder from an initial pressure and temperature of P_1 = 100 kPa and T_1 =25°C to a final pressure of P_2 = 500 kPa.

Treat the mixture as an ideal gas with variable specific heats. For reference, the molar masses of methane and oxygen are M_{CH4} = 16.04 kg/kmol and M_{O2} = 32.00 kg/kmol, respectively, and \bar{R} = 8.314 kJ/kmol K.

- (a) Determine the molar composition (i.e., the mole fractions) of the mixture.
- (b) Sketch the compression process on both <u>*P*-v</u> and <u>*T*-s diagrams</u>.
- (c) Find the following properties and changes in properties:
 - i. R_{mix} in kJ/kg·K
 - ii. $v_{1,O2}$ in m³/kg
 - iii. $(\bar{h}_2 \bar{h}_1)_{CH4}$ in kJ/kmol
 - iv. $(\bar{s}_2 \bar{s}_1)_{\text{mix}}$ in kJ/kmol·K

<u>Length</u>

1 ft = 12 in = 0.3048 m = 1/3 yd 1 m = 100 cm = 1000 mm = 39.37 in = 3.2808 ft 1 mile = 5280 ft = 1609.3 m

Mass

1 kg = 1000 g = 2.2046 lbm 1 lbm = 16 oz = 0.45359 kg 1 slug = 32.174 lbm

Temperature Values

 $\begin{array}{l} (T/K) = (T/ \circ R) / 1.8 \\ (T/K) = (T/ \circ C) + 273.15 \\ (T/ \circ C) = [(T/ \circ F) - 32] / 1.8 \\ (T/ \circ R) = 1.8 (T/K) \\ (T/ \circ R) = (T/ \circ F) + 459.67 \\ (T/ \circ F) = 1.8 (T/ \circ C) + 32 \end{array}$

Temperature Differences

$$(\Delta T/^{\circ} R) = 1.8(\Delta T/K)$$
$$(\Delta T/^{\circ} R) = (\Delta T/^{\circ} F)$$
$$(\Delta T/K) = (\Delta T/^{\circ} C)$$

Volume

 $1 m^{3} = 1000 L = 10^{6} cm^{3} = 10^{6} mL = 35.315 ft^{3}$ = 264.17 gal $1 ft^{3} = 1728 in^{3} = 7.4805 gal = 0.028317 m^{3}$ $1 gal = 0.13368 ft^{3} = 0.0037854 m^{3}$

Volumetric Flow Rate

1 m³/s = 35.315 ft³/s = 264.17 gal/s 1 ft³/s = 1.6990 m³/min = 7.4805 gal/s = 448.83 gal/min

Force

 $1 N = 1 kg m/s^{2} = 0.22481 lbf$ $1 lbf = 1 slug ft/s^{2} = 32.174 lbm ft/s^{2}$ = 4.4482 N

Pressure

1 atm = 101.325 kPa = 1.01325 bar = 14.696 lbf/in² 1 bar = 100 kPa = 10⁵ Pa 1 Pa = 1 N/m² = 10⁻³ kPa 1 lbf/in² = 6.8947 kPa = 6894.7 N/m²; [lbf/in² = "psi"]

Energy

1 J = 1 N m $1 kJ = 1000 J = 737.56 \text{ ft} \cdot \text{lbf} = 0.94782 \text{ Btu}$ $1 \text{ Btu} = 1.0551 \text{ kJ} = 778.17 \text{ ft} \cdot \text{lbf}$ $1 \text{ ft} \cdot \text{lbf} = 1.3558 \text{ J}$ $1 \text{ J} = \text{Pa m}^3$

Energy Transfer Rate

1 kW = 1 kJ/s = 737.56 ft lbf/s = 1.3410 hp = 0.94782 Btu/s 1 Btu/s = 1.0551 kW = 1.4149 hp = 778.17 ft lbf/s 1 hp = 550 ft lbf/s = 0.74571 kW = 0.70679 Btu/s

Specific Energy

1 kJ/kg = 1000 m²/s² 1 Btu/lbm = 25037 ft²/s² 1 ft·lbf /lbm = 32.174 ft²/s²