Name

ME301 - Applications of Themodynamics

Circle section:	$\mathbf{0 1}\left[4^{\text {th }}\right.$ Mech $]$	$\mathbf{0 2}\left[5^{\text {th }}\right.$ Mech $]$
	$\mathbf{0 3}\left[4^{\text {th }}\right.$ Thom $]$	$\mathbf{0 4}\left[5^{\text {th }}\right.$ Thom $]$
	$\mathbf{0 5}\left[4^{\text {th }}\right.$ Lui $]$	

Exam 2
Oct 26, 2017

Rules:

- Closed book/notes exam.
- Two help sheets allowed. (8-1/2 x 11" sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.
+1 for CM

Problem 1 Problem 2	
	/ 37
Problem 3	130
Total	/100

PROBLEM 1 [32 points]

(a) [14 pts] Indicate whether each of the following statements is true or false.

True | False One of the air standard assumptions is to model an open system cycle as a closed system.

True | False Increasing compression ratio increases the efficiency of an Otto cycle.
True | False The specific entropy of a fluid exiting a steady-state, adiabatic turbine increases as turbine efficiency increases.

True | False Heat pump and refrigeration cycles form clockwise plots on a T-s diagram.
True | False Power cycles form (heat engines) form clockwise plots on a $P-v$ diagram.
True | False According to Dalton's model, mixtures of ideal gases can also be assumed to be ideal gases.

True | False Partial pressure is calculated by multiplying mass fraction with total pressure.
(b) [7 pts] Given the $P-v$ and $T-s$ diagrams at the right,
i. add state numbers to the $P-v$ diagram that correspond with the states of the T-s diagram.
ii. Show where the new state point 2 would be on each diagram if the compression ratio were increased while keeping the initial volume the

 same.
(c) [2 pts] When finding specific entropy changes for one component of an ideal gas mixture, what pressure should you use?
o Mixture pressure
o Partial pressure of the component
o It doesn't matter, either one will always work.
o None of the above - specific entropy of an ideal gas is a function of temperature only
(d) [3 pts] Match the component of a refrigeration cycle with the correct description.
__ Throttling valve
___ Compressor
i. can never be reversible
ii. relates to refrigeration capacity
___ Condenser
iii. relates to the denominator of the coefficient of performance
(e) [6 pts] Compare the T-s diagrams of two gas turbine cycles (two Brayton cycles) as shown. Making use of cold air standard assumptions, indicate which cycle better fits each description.

Cycle A

Cycle B

Circle the better choice
i. Has a higher pressure ratio:
ii. Has a higher turbine inlet temperature:
iii. Has a higher cycle efficiency:
iv. Could makes use of a regenerator:
A
B
A
B
A
B
A
B

PROBLEM 2 [37 points]

A Rankine cycle is modified with reheat as shown in the figure. The flowrate of steam is $\dot{m}=1.5 \mathrm{~kg} / \mathrm{s}$. The isentropic efficiencies of the pump and low-pressure turbine are $\eta_{P}=0.7$ and $\eta_{H P T}=0.8$, respectively. Other operating conditions are given in the figure, and some property information is given in the table below.

State	P $[\mathrm{kPa}]$	T $\left[{ }^{\circ} \mathrm{C}\right]$	x	v $\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	u $[\mathrm{~kJ} / \mathrm{kg}]$	h $[\mathrm{~kJ} / \mathrm{kg}]$	s $[\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}]$
1		20.0	0.0	0.001018	83.83	83.84	0.2962
2 s	8000	20.1		0.001018	83.83	91.83	
2	8000						
3	8000	700		0.0548	3443	3881	7.280
4 s	1000			0.2796	2865	3145	
4	1000						7.506
5	1000	700		0.4478	3476	3924	8.274
6 s			0.95	55.07	2294	2422	
6				61.55	2429	2573	8.783

(a) Find the inlet pressure to the pump in kPa .
(b) Calculate the power into the pump in kW .
(c) Calculate the power out of the high-pressure turbine in kW .
(d) Calculate the rate of heat transfer into the reheat section in kW .
(e) Calculate the cycle efficiency.
(f) Calculate the isentropic efficiency of the low-pressure turbine..

Problem 3 [30 points]

Two kilograms of a two-component mixture of 20% of methane $\left(\mathrm{CH}_{4}\right)$ and 80% of oxygen $\left(\mathrm{O}_{2}\right)$ by mass is compressed isothermally in a closed piston cylinder from an initial pressure and temperature of $P_{1}=100 \mathrm{kPa}$ and $T_{1}=25^{\circ} \mathrm{C}$ to a final pressure of $P_{2}=500 \mathrm{kPa}$.

Treat the mixture as an ideal gas with variable specific heats. For reference, the molar masses of methane and oxygen are $M_{\mathrm{CH} 4}=16.04 \mathrm{~kg} / \mathrm{kmol}$ and $M_{\mathrm{O} 2}=32.00 \mathrm{~kg} / \mathrm{kmol}$, respectively, and $\bar{R}=$ $8.314 \mathrm{~kJ} / \mathrm{kmol} \mathrm{K}$.
(a) Determine the molar composition (i.e., the mole fractions) of the mixture.
(b) Sketch the compression process on both $\underline{P-v}$ and $\underline{T-s}$ diagrams.
(c) Find the following properties and changes in properties:
i. $\quad R_{m i x}$ in $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
ii. $v_{1, \mathrm{O} 2}$ in $\mathrm{m}^{3} / \mathrm{kg}$
iii. $\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{CH} 4}$ in $\mathrm{kJ} / \mathrm{kmol}$
iv. $\left(\bar{s}_{2}-\bar{s}_{1}\right)_{\text {mix }}$ in $\mathrm{kJ} / \mathrm{kmol} \cdot \mathrm{K}$

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
$1 \mathrm{slug}=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3} \\
& =264.17 \mathrm{gal} \\
1 \mathrm{ft}^{3} & =1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3} \\
1 \mathrm{gal} & =0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}
\end{aligned}
$$

Volumetric Flow Rate

$$
1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}
$$

$$
1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}
$$

$$
=448.83 \mathrm{gal} / \mathrm{min}
$$

Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

$$
=14.696 \mathrm{lbf} / \mathrm{in}^{2}
$$

1 bar $=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
$1 \mathrm{Btu}=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$
$1 \mathrm{~J}=\mathrm{Pa} \mathrm{m}^{3}$

Energy Transfer Rate

$$
\begin{aligned}
& 1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410 \\
& \mathrm{hp} \quad=0.94782 \mathrm{Btu} / \mathrm{s} \\
& \begin{aligned}
1 \mathrm{Btu} / \mathrm{s} & =1.0551 \mathrm{~kW}=1.4149 \mathrm{hp} \\
& =778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s} \\
1 \mathrm{hp} & =550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW} \\
= & 0.70679 \mathrm{Btu} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

