ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

Applications of Thermodynamics

Name

Section: \Box 01 (Lui, 9th hour) \Box 04 (Mech, 10th hour) \Box 02 (Lui, 10th hour) \Box 05 (Adams, 9th hour) \Box 03 (Mech, 9th hour) \Box 06 (Adams, 10th hour)

CM

Exam 1

Oct 26, 2015

Problem 1	/ 15
Problem 2	/ 40
Problem 3	/ 45
Total	/ 100

Show all work for full credit.

Open property tables. **Do not interpolate;** use closest values. Computer use for computational purposes and/or music. Two 8 ½ × 11" equation sheets – one side, hand-written, no worked examples or homework.

CM: _____

Problem 1 [15 pts]

(a) [6 pts] Consider a thermodynamic cycle of a closed *P* system as represented by the following *P-v* diagram.
Does it describe a power cycle or a refrigeration cycle?
Briefly explain your answer.

- (b) [9 pts] Circle the correct answer(s) in the following questions:
 - a. [3 pts] The thermal efficiency of a power cycle is a second-law efficiency.

True | False

b. [2 pts] Inter-cooling between successive stages of compression has the following effect on the net power output:

Increase | Decrease | No change

c. [2 pts] An increase in the compression ratio of a reciprocating internal combustion engine has the following effect on the overall thermal efficiency of the cycle

Increase | Decrease | No change

d. [2 pts] Under steady-state operation, a fluid at a given location experiences no change in the following thermodynamic variable(s). Circle all correct answer(s).

Pressure | Enthalpy | Entropy

Problem 2 [40 pts]

A piston cylinder contains a mass m = 2 kg of saturated liquid steam at a pressure of $P_1 = 2 \text{ bar}$. Heat transfer in the amount of Q = 4404 kJ is added to the steam and it expands at constant pressure until it is a saturated vapor. The heat transfer comes from a reservoir at temperature $T_R = 500$ K. The surroundings are at $T_0 = 300 \text{ K}$ and $P_0 = 100 \text{ kPa}$.

- (a) [15 pts] Find the <u>useful work</u> into or out of the steam indicate its direction.
- (b) [10 pts] Find the <u>change in exergy</u> of the steam during the process.
- (c) [15 pts] **Using an accounting of exergy approach** (i.e., not entropy accounting), find the <u>total exergy destroyed</u> in this process.

CM: _____

Problem 3 [45 pts]

A modified Brayton cycle operates as shown in the figure below. All of the power output of the high-pressure **(HP)** turbine is used to power the compressor, which has no other power input. The cycle is well-modeled using the air standard assumptions. Partial property data are noted in the table. Don't interpolate when using property tables for other values; choose closest data.

- (a) [12 pts] Compute the <u>exergetic efficiency of the</u> <u>compressor</u>, ε_{C} .
- (b) [13 pts] Compute the <u>isentropic efficiency of</u> <u>the low-pressure (LP) turbine</u>, η_{LP T}.
- (c) [8 pts] Compute the <u>regenerator effectiveness</u>.
- (d) [1 pts] Compute the <u>thermal efficiency</u> of the cycle.

	<u>Air Flow data:</u> $\dot{m} = 20 \text{ kg/s}$					
	T [K]	P [kPa]	h [kJ/kg]	<i>s</i> ° [kJ/(kg-K)]	p_r	
0	300	100	300.2	1.702	1.39	
1	290	100	290.2	1.668	1.23	
2	600	900	607.0	2.409	16.3	
3	840	900	866.1	2.772	57.6	
4	1200	900	1278.0	3.179	238.0	
5		410				
6	1200	410	1278.0	3.179	238.0	
7	900	100	932.9	2.849	75.3	
8		100				

CM: _____